{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - S 2019 Pré-natal - Parte 4" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(tictoc)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)\n", "source(\"utils.R\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 293726
  2. 1087
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 293726\n", "\\item 1087\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 293726\n", "2. 1087\n", "\n", "\n" ], "text/plain": [ "[1] 293726 1087" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.00562 0.26621 0.54401 1.00000 1.12765 61.09981 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos e calculando peso amostral - summary de verificação\n", "pns2019.1<- %>% filter(V0025A==1) \n", "pns2019.1<-pns2019.1 %>% mutate(peso_morador_selec=((V00291*(90846/168426190))))\n", "pns2019.1<-pns2019.1 %>% filter(!is.na(peso_morador_selec))\n", "summary(pns2019.1$peso_morador_selec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
2399
Não
335
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2399\n", "\\item[Não] 335\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2399Não\n", ": 335NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2399 335 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2356
Não
378
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2356\n", "\\item[Não] 378\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2356Não\n", ": 378NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2356 378 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2179
Não
555
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2179\n", "\\item[Não] 555\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2179Não\n", ": 555NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2179 555 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2424
Não
394
NA's
88028
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2424\n", "\\item[Não] 394\n", "\\item[NA's] 88028\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2424Não\n", ": 394NA's\n", ": 88028\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2424 394 88028 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Desfechos - Indicadores\n", "\n", "# 16. Proporção de mulheres que fizeram teste de HIV/AIDS durante o pré-natal - S016P.\n", "pns2019.1$S016P <- NA\n", "pns2019.1$S016P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S016P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S091==1] <- 1\n", "pns2019.1$S016P<-factor(pns2019.1$S016P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S016P)\n", "\n", "# 17. Proporção de mulheres que fizeram teste de HIV/AIDS durante o pré-natal e receberam o resultado antes do parto - S017P.\n", "pns2019.1$S017P <- NA\n", "pns2019.1$S017P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S017P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S092==1] <- 1\n", "pns2019.1$S017P<-factor(pns2019.1$S017P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S017P)\n", "\n", "# 18. Proporção de mulheres que receberam indicação da maternidade para o parto durante o pré-natal - S018P.\n", "pns2019.1$S018P <- NA\n", "pns2019.1$S018P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S018P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S097==1] <- 1\n", "pns2019.1$S018P<-factor(pns2019.1$S018P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S018P)\n", "\n", "# 19. Proporção de mulheres que foram atendidas por médico no último parto - S019P.\n", "pns2019.1$S019P <- NA\n", "pns2019.1$S019P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068>0] <- 2\n", "pns2019.1$S019P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068>0 & pns2019.1$S111==1] <- 1\n", "pns2019.1$S019P<-factor(pns2019.1$S019P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S019P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
urbano
69873
rural
20973
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[urbano] 69873\n", "\\item[rural] 20973\n", "\\end{description*}\n" ], "text/markdown": [ "urbano\n", ": 69873rural\n", ": 20973\n", "\n" ], "text/plain": [ "urbano rural \n", " 69873 20973 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2019.1 <- pns2019.1 %>% rename(urb_rur=V0026)\n", "pns2019.1$urb_rur<-factor(pns2019.1$urb_rur, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n", "summary(pns2019.1$urb_rur)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
2176
Acre
2380
Amazonas
3479
Roraima
2238
Pará
3853
Amapá
1554
Tocantins
1922
Maranhão
5080
Piauí
2740
Ceará
4265
Rio Grande do Norte
2962
Paraíba
3158
Pernambuco
4083
Alagoas
2987
Sergipe
2610
Bahia
3659
Minas Gerais
5209
Espírito Santo
3541
Rio de Janeiro
4966
São Paulo
6114
Paraná
3967
Santa Catarina
3738
Rio Grande do Sul
3767
Mato Grosso do Sul
2863
Mato Grosso
2468
Goiás
2702
Distrito Federal
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 2176\n", "\\item[Acre] 2380\n", "\\item[Amazonas] 3479\n", "\\item[Roraima] 2238\n", "\\item[Pará] 3853\n", "\\item[Amapá] 1554\n", "\\item[Tocantins] 1922\n", "\\item[Maranhão] 5080\n", "\\item[Piauí] 2740\n", "\\item[Ceará] 4265\n", "\\item[Rio Grande do Norte] 2962\n", "\\item[Paraíba] 3158\n", "\\item[Pernambuco] 4083\n", "\\item[Alagoas] 2987\n", "\\item[Sergipe] 2610\n", "\\item[Bahia] 3659\n", "\\item[Minas Gerais] 5209\n", "\\item[Espírito Santo] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Paraná] 3967\n", "\\item[Santa Catarina] 3738\n", "\\item[Rio Grande do Sul] 3767\n", "\\item[Mato Grosso do Sul] 2863\n", "\\item[Mato Grosso] 2468\n", "\\item[Goiás] 2702\n", "\\item[Distrito Federal] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 2176Acre\n", ": 2380Amazonas\n", ": 3479Roraima\n", ": 2238Pará\n", ": 3853Amapá\n", ": 1554Tocantins\n", ": 1922Maranhão\n", ": 5080Piauí\n", ": 2740Ceará\n", ": 4265Rio Grande do Norte\n", ": 2962Paraíba\n", ": 3158Pernambuco\n", ": 4083Alagoas\n", ": 2987Sergipe\n", ": 2610Bahia\n", ": 3659Minas Gerais\n", ": 5209Espírito Santo\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Paraná\n", ": 3967Santa Catarina\n", ": 3738Rio Grande do Sul\n", ": 3767Mato Grosso do Sul\n", ": 2863Mato Grosso\n", ": 2468Goiás\n", ": 2702Distrito Federal\n", ": 2365\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 2176 2380 3479 2238 \n", " Pará Amapá Tocantins Maranhão \n", " 3853 1554 1922 5080 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 2740 4265 2962 3158 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 4083 2987 2610 3659 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 5209 3541 4966 6114 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 3967 3738 3767 2863 \n", " Mato Grosso Goiás Distrito Federal \n", " 2468 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2019.1 <- pns2019.1 %>% rename(uf=V0001)\n", "pns2019.1$uf<-factor(pns2019.1$uf, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2019.1$uf)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
17602
Nordeste
31544
Sudeste
19830
Sul
11472
Centro-Oeste
10398
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 17602\n", "\\item[Nordeste] 31544\n", "\\item[Sudeste] 19830\n", "\\item[Sul] 11472\n", "\\item[Centro-Oeste] 10398\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 17602Nordeste\n", ": 31544Sudeste\n", ": 19830Sul\n", ": 11472Centro-Oeste\n", ": 10398\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 17602 31544 19830 11472 10398 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2019.1 <- pns2019.1 %>% \n", " mutate(região = fct_collapse(uf, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\"))\n", " )\n", "summary(pns2019.1$região)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
2176
Rio Branco
2380
Manaus
3479
Boa Vista
2238
Belém
3853
Macapá
1554
Palmas
1922
São Luís
5080
Teresina
2740
Fortaleza
4265
Natal
2962
João Pessoa
3158
Recife
4083
Maceió
2987
Aracaju
2610
Salvador
3659
Belo Horizonte
5209
Vitória
3541
Rio de Janeiro
4966
São Paulo
6114
Curitiba
3967
Florianópolis
3738
Porto Alegre
3767
Campo Grande
2863
Cuiabá
2468
Goiânia
2702
Brasília
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 2176\n", "\\item[Rio Branco] 2380\n", "\\item[Manaus] 3479\n", "\\item[Boa Vista] 2238\n", "\\item[Belém] 3853\n", "\\item[Macapá] 1554\n", "\\item[Palmas] 1922\n", "\\item[São Luís] 5080\n", "\\item[Teresina] 2740\n", "\\item[Fortaleza] 4265\n", "\\item[Natal] 2962\n", "\\item[João Pessoa] 3158\n", "\\item[Recife] 4083\n", "\\item[Maceió] 2987\n", "\\item[Aracaju] 2610\n", "\\item[Salvador] 3659\n", "\\item[Belo Horizonte] 5209\n", "\\item[Vitória] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Curitiba] 3967\n", "\\item[Florianópolis] 3738\n", "\\item[Porto Alegre] 3767\n", "\\item[Campo Grande] 2863\n", "\\item[Cuiabá] 2468\n", "\\item[Goiânia] 2702\n", "\\item[Brasília] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 2176Rio Branco\n", ": 2380Manaus\n", ": 3479Boa Vista\n", ": 2238Belém\n", ": 3853Macapá\n", ": 1554Palmas\n", ": 1922São Luís\n", ": 5080Teresina\n", ": 2740Fortaleza\n", ": 4265Natal\n", ": 2962João Pessoa\n", ": 3158Recife\n", ": 4083Maceió\n", ": 2987Aracaju\n", ": 2610Salvador\n", ": 3659Belo Horizonte\n", ": 5209Vitória\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Curitiba\n", ": 3967Florianópolis\n", ": 3738Porto Alegre\n", ": 3767Campo Grande\n", ": 2863Cuiabá\n", ": 2468Goiânia\n", ": 2702Brasília\n", ": 2365\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 2176 2380 3479 2238 3853 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 1554 1922 5080 2740 4265 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 2962 3158 4083 2987 2610 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 3659 5209 3541 4966 6114 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 3967 3738 3767 2863 2468 \n", " Goiânia Brasília \n", " 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2019.1<- pns2019.1 %>% mutate(capital= fct_collapse(uf,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2019.1$capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
18 a 24 anos
8145
25 a 29 anos
7249
30 a 39 anos
18150
40 anos ou mais
54987
NA's
2315
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[18 a 24 anos] 8145\n", "\\item[25 a 29 anos] 7249\n", "\\item[30 a 39 anos] 18150\n", "\\item[40 anos ou mais] 54987\n", "\\item[NA's] 2315\n", "\\end{description*}\n" ], "text/markdown": [ "18 a 24 anos\n", ": 814525 a 29 anos\n", ": 724930 a 39 anos\n", ": 1815040 anos ou mais\n", ": 54987NA's\n", ": 2315\n", "\n" ], "text/plain": [ " 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais NA's \n", " 8145 7249 18150 54987 2315 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Faixas Etárias\n", "\n", "pns2019.1 <- pns2019.1 %>% mutate(fx_idade_S=cut(C008,\n", " breaks = c(18,25,30,40,120),\n", " labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n", " ordered_result = TRUE, right = FALSE))\n", "summary(pns2019.1$fx_idade_S)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
33133
Preta
10345
Parda
45994
NA's
1374
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 33133\n", "\\item[Preta] 10345\n", "\\item[Parda] 45994\n", "\\item[NA's] 1374\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 33133Preta\n", ": 10345Parda\n", ": 45994NA's\n", ": 1374\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 33133 10345 45994 1374 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Raça\n", "pns2019.1 <- pns2019.1 %>% mutate(raça= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "pns2019.1$raça<-factor(pns2019.1$raça, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "summary(pns2019.1$raça)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
23697
1/2 até 1 SM
26406
1 até 2 SM
22466
2 até 3 SM
7612
Mais de 3 SM
10643
NA's
22
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 23697\n", "\\item[1/2 até 1 SM] 26406\n", "\\item[1 até 2 SM] 22466\n", "\\item[2 até 3 SM] 7612\n", "\\item[Mais de 3 SM] 10643\n", "\\item[NA's] 22\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 236971/2 até 1 SM\n", ": 264061 até 2 SM\n", ": 224662 até 3 SM\n", ": 7612Mais de 3 SM\n", ": 10643NA's\n", ": 22\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 23697 26406 22466 7612 10643 22 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rendimento domiciliar per capita\n", "pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n", " ifelse(VDF004%in% 3, 2, \n", " ifelse(VDF004%in% 4, 3,\n", " ifelse(VDF004%in% 5, 4, \n", " ifelse(is.na(VDF004)==TRUE, NA_real_, 5))))))\n", "pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n", " \"2 até 3 SM\",\"Mais de 3 SM\"))\n", "summary(pns2019.1$rend_per_capita)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Escolaridade" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Fundamental incompleto ou equivalente
36276
Médio incompleto ou equivalente
13520
Superior incompleto ou equivalente
27433
Superior completo
13617
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Fundamental incompleto ou equivalente] 36276\n", "\\item[Médio incompleto ou equivalente] 13520\n", "\\item[Superior incompleto ou equivalente] 27433\n", "\\item[Superior completo] 13617\n", "\\end{description*}\n" ], "text/markdown": [ "Fundamental incompleto ou equivalente\n", ": 36276Médio incompleto ou equivalente\n", ": 13520Superior incompleto ou equivalente\n", ": 27433Superior completo\n", ": 13617\n", "\n" ], "text/plain": [ "Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n", " 36276 13520 \n", " Superior incompleto ou equivalente Superior completo \n", " 27433 13617 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Escolaridade\n", "pns2019.1 <- pns2019.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n", " ifelse(VDD004A%in% 3:4, 2, \n", " ifelse(VDD004A%in% 5:6, 3,4\n", " ))))\n", "\n", "pns2019.1$gescol<-factor(pns2019.1$gescol, levels=c(1,2,3,4), \n", " labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n", " \"Superior incompleto ou equivalente\",\"Superior completo\"))\n", "summary(pns2019.1$gescol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec C008 \n", " 1210010: 1167 140001681: 18 Min. : 0.00562 Min. : 15.00 \n", " 1410011: 792 140003815: 18 1st Qu.: 0.26621 1st Qu.: 32.00 \n", " 2710111: 779 140005777: 18 Median : 0.54401 Median : 45.00 \n", " 2410011: 745 140006746: 18 Mean : 1.00000 Mean : 46.39 \n", " 5010011: 738 140007081: 18 3rd Qu.: 1.12765 3rd Qu.: 60.00 \n", " 3210011: 711 140007715: 18 Max. :61.09981 Max. :107.00 \n", " (Other):85914 (Other) :90738 \n", " C006 C009 V0031 urb_rur \n", " Min. :1.000 Min. :1.000 Min. :1.000 urbano:69873 \n", " 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 rural :20973 \n", " Median :2.000 Median :4.000 Median :2.000 \n", " Mean :1.529 Mean :2.679 Mean :2.605 \n", " 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:4.000 \n", " Max. :2.000 Max. :9.000 Max. :4.000 \n", " \n", " uf região capital \n", " São Paulo : 6114 Norte :17602 São Paulo : 6114 \n", " Minas Gerais : 5209 Nordeste :31544 Belo Horizonte: 5209 \n", " Maranhão : 5080 Sudeste :19830 São Luís : 5080 \n", " Rio de Janeiro: 4966 Sul :11472 Rio de Janeiro: 4966 \n", " Ceará : 4265 Centro-Oeste:10398 Fortaleza : 4265 \n", " Pernambuco : 4083 Recife : 4083 \n", " (Other) :61129 (Other) :61129 \n", " fx_idade_S raça rend_per_capita \n", " 18 a 24 anos : 8145 Branca:33133 Até 1/2 SM :23697 \n", " 25 a 29 anos : 7249 Preta :10345 1/2 até 1 SM:26406 \n", " 30 a 39 anos :18150 Parda :45994 1 até 2 SM :22466 \n", " 40 anos ou mais:54987 NA's : 1374 2 até 3 SM : 7612 \n", " NA's : 2315 Mais de 3 SM:10643 \n", " NA's : 22 \n", " \n", " gescol S016P S017P \n", " Fundamental incompleto ou equivalente:36276 Sim : 2399 Sim : 2356 \n", " Médio incompleto ou equivalente :13520 Não : 335 Não : 378 \n", " Superior incompleto ou equivalente :27433 NA's:88112 NA's:88112 \n", " Superior completo :13617 \n", " \n", " \n", " \n", " S018P S019P S068 \n", " Sim : 2179 Sim : 2424 Min. :1.00 \n", " Não : 555 Não : 394 1st Qu.:1.00 \n", " NA's:88112 NA's:88028 Median :1.00 \n", " Mean :1.03 \n", " 3rd Qu.:1.00 \n", " Max. :2.00 \n", " NA's :87936 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando variáveis para cálculo de indicadores no survey\n", "pns2019Ssurvey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"C008\", \"C006\", \"C009\", \"V0031\", \n", " \"urb_rur\", \"uf\", \"região\", \"capital\", \"fx_idade_S\", \"raça\", \"rend_per_capita\", \"gescol\",\n", " \"S016P\", \"S017P\", \"S018P\", \"S019P\", \"S068\") \n", "summary(pns2019Ssurvey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo S - Parte 4 2019" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "#Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2019Ssurvey, file.path(diretorio_saida, \"pns2019Ssurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "desPNS=svydesign(id=~UPA_PNS, \n", " strat=~V0024,\n", " weight=~peso_morador_selec,\n", " nest=TRUE, \n", " data=pns2019Ssurvey)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "#survey design S016P a S018P\n", "desPNSS=subset(desPNS, C006==2 & C008>=18 & S068==1)\n", "desPNSS_C=subset(desPNS, C006==2 & C008>=18 & S068==1 & V0031==1)\n", "desPNSS_R=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(raça))\n", "desPNSS_Rend=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(rend_per_capita))" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "#survey design S019P\n", "desPNSS_S019P=subset(desPNS, C006==2 & C008>=18 & S068>0)\n", "desPNSS_S019P_C=subset(desPNS, C006==2 & C008>=18 & S068>0 & V0031==1)\n", "desPNSS_S019P_R=subset(desPNS, C006==2 & C008>=18 & S068>0 & !is.na(raça))\n", "desPNSS_S019P_Rend=subset(desPNS, C006==2 & C008>=18 & S068>0 & !is.na(rend_per_capita))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "design_por_abrangencia <- list(\n", " S016P = list(\n", " capital = desPNSS_C,\n", " raça = desPNSS_R,\n", " rend_per_capita = desPNSS_Rend,\n", " default = desPNSS\n", " ),\n", " S017P = list(\n", " capital = desPNSS_C,\n", " raça = desPNSS_R,\n", " rend_per_capita = desPNSS_Rend,\n", " default = desPNSS\n", " ),\n", " S018P = list(\n", " capital = desPNSS_C,\n", " raça = desPNSS_R,\n", " rend_per_capita = desPNSS_Rend,\n", " default = desPNSS\n", " ),\n", " S019P = list(\n", " capital = desPNSS_S019P_C,\n", " raça = desPNSS_S019P_R,\n", " rend_per_capita = desPNSS_S019P_Rend,\n", " default = desPNSS_S019P\n", " )\n", ")\n", "dominios <- c(\n", " ~raça,\n", " ~rend_per_capita,\n", " ~fx_idade_S,\n", " ~urb_rur,\n", " ~uf,\n", " ~região,\n", " ~capital,\n", " ~gescol\n", ") \n", "indicadores <- c(~S016P, ~S017P, ~S018P, ~S019P)\n", "totais <- c(~Brasil,~Capital)\n", "Ano <- \"2019\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores\n", "Essas iterações rodam por indicador, abrangência e por design" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "matriz_indicadores <- popula_indicadores(design_por_abrangencia, dominios, indicadores, Ano)" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 308 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2019S016P0.87470430.83944470.90996390.02056687
Pretaraça Preta 2019S016P0.92704400.88195400.97213400.02481599
Pardaraça Parda 2019S016P0.89982640.88134270.91831000.01048046
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019S016P0.88116660.85566100.90667230.01476830
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019S016P0.89863440.86727050.92999820.01780731
1 até 2 SMrend_per_capita1 até 2 SM 2019S016P0.93211800.89835970.96587620.01847824
2 até 3 SMrend_per_capita2 até 3 SM 2019S016P0.91313250.84806090.97820410.03635882
Mais de 3 SMrend_per_capitaMais de 3 SM 2019S016P0.84490110.75019410.93960810.05719106
18 a 24 anosfx_idade_s 18 a 24 anos 2019S016P0.87845670.84717830.90973510.01816671
25 a 29 anosfx_idade_s 25 a 29 anos 2019S016P0.91211800.88543960.93879630.01492314
30 a 39 anosfx_idade_s 30 a 39 anos 2019S016P0.89962820.87186670.92738980.01574462
40 anos ou maisfx_idade_s 40 anos ou mais 2019S016P0.85495420.76876970.94113880.05143260
urbanourb_rur urbano 2019S016P0.90071250.88210430.91932080.01054074
ruralurb_rur rural 2019S016P0.85416370.81524660.89308070.02324614
Rondôniauf Rondônia 2019S016P0.96572740.93743810.99401670.01494582
Acreuf Acre 2019S016P0.93410280.86046021.00774540.04022411
Amazonasuf Amazonas 2019S016P0.90734330.84546350.96922310.03479597
Roraimauf Roraima 2019S016P0.77343180.60398760.94287590.11177804
Paráuf Pará 2019S016P0.91342460.85753820.96931100.03121660
Amapáuf Amapá 2019S016P0.95555420.88851701.02259150.03579421
Tocantinsuf Tocantins 2019S016P0.81064280.67786930.94341630.08356679
Maranhãouf Maranhão 2019S016P0.80951860.73368350.88535370.04779642
Piauíuf Piauí 2019S016P0.93913570.88873110.98954030.02738380
Cearáuf Ceará 2019S016P0.80402170.71939740.88864600.05370064
Rio Grande do Norteuf Rio Grande do Norte2019S016P0.93539310.85888311.01190320.04173267
Paraíbauf Paraíba 2019S016P0.85664990.75817080.95512910.05865337
Pernambucouf Pernambuco 2019S016P0.87116160.80687060.93545260.03765332
Alagoasuf Alagoas 2019S016P0.80330460.70702190.89958730.06115329
Sergipeuf Sergipe 2019S016P0.85168480.75044490.95292470.06064918
Bahiauf Bahia 2019S016P0.90966530.84553230.97379830.03597093
Rio Branco3capitalRio Branco 2019S019P0.85280560.734470580.97114077.079706e-02
Manaus3capitalManaus 2019S019P0.88279970.777946400.98765306.059989e-02
Boa Vista3capitalBoa Vista 2019S019P0.88846270.796790750.98013465.264403e-02
Belém3capitalBelém 2019S019P0.95719200.896768941.01761513.220740e-02
Macapá3capitalMacapá 2019S019P0.41309390.068357640.75783014.257847e-01
Palmas3capitalPalmas 2019S019P1.00000001.000000001.00000000.000000e+00
São Luís3capitalSão Luís 2019S019P0.90722900.794927421.01953076.315693e-02
Teresina3capitalTeresina 2019S019P1.00000001.000000001.00000002.414201e-17
Fortaleza3capitalFortaleza 2019S019P0.85284620.700566211.00512619.110117e-02
Natal3capitalNatal 2019S019P0.95740350.895679151.01912783.289375e-02
João Pessoa3capitalJoão Pessoa 2019S019P0.84697510.724890710.96905957.354301e-02
Recife3capitalRecife 2019S019P0.79576990.594391090.99714881.291155e-01
Maceió3capitalMaceió 2019S019P0.90521850.823555880.98688124.602799e-02
Aracaju3capitalAracaju 2019S019P0.87193120.725673011.01818948.558347e-02
Salvador3capitalSalvador 2019S019P0.97720480.931349981.02305962.394149e-02
Belo Horizonte3capitalBelo Horizonte 2019S019P0.83772750.717523310.95793167.320970e-02
Vitória3capitalVitória 2019S019P1.00000001.000000001.00000000.000000e+00
Rio de Janeiro7capitalRio de Janeiro 2019S019P0.98136960.944543011.01819621.914613e-02
São Paulo6capitalSão Paulo 2019S019P0.94855020.893715371.00338492.949496e-02
Curitiba3capitalCuritiba 2019S019P0.89222680.693850311.09060341.134402e-01
Florianópolis3capitalFlorianópolis 2019S019P1.00000001.000000001.00000002.862188e-17
Porto Alegre3capitalPorto Alegre 2019S019P0.97663290.930379921.02288592.416353e-02
Campo Grande3capitalCampo Grande 2019S019P0.97865480.948786711.00852291.557148e-02
Cuiabá3capitalCuiabá 2019S019P0.91465460.797534091.03177516.533226e-02
Goiânia3capitalGoiânia 2019S019P0.89852560.762219541.03483177.739925e-02
Brasília3capitalBrasília 2019S019P0.86622230.736692750.99575197.629419e-02
Fundamental incompleto ou equivalente3gescol Fundamental incompleto ou equivalente2019S019P0.74215290.686030130.79827573.858315e-02
Médio incompleto ou equivalente3gescol Médio incompleto ou equivalente 2019S019P0.83003360.780111450.87995583.068667e-02
Superior incompleto ou equivalente3gescol Superior incompleto ou equivalente 2019S019P0.90190190.872350220.93145351.671761e-02
Superior completo3gescol Superior completo 2019S019P0.97577600.959787180.99176478.360210e-03
\n" ], "text/latex": [ "A data.frame: 308 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2019 & S016P & 0.8747043 & 0.8394447 & 0.9099639 & 0.02056687\\\\\n", "\tPreta & raça & Preta & 2019 & S016P & 0.9270440 & 0.8819540 & 0.9721340 & 0.02481599\\\\\n", "\tParda & raça & Parda & 2019 & S016P & 0.8998264 & 0.8813427 & 0.9183100 & 0.01048046\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S016P & 0.8811666 & 0.8556610 & 0.9066723 & 0.01476830\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S016P & 0.8986344 & 0.8672705 & 0.9299982 & 0.01780731\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S016P & 0.9321180 & 0.8983597 & 0.9658762 & 0.01847824\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S016P & 0.9131325 & 0.8480609 & 0.9782041 & 0.03635882\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S016P & 0.8449011 & 0.7501941 & 0.9396081 & 0.05719106\\\\\n", "\t18 a 24 anos & fx\\_idade\\_s & 18 a 24 anos & 2019 & S016P & 0.8784567 & 0.8471783 & 0.9097351 & 0.01816671\\\\\n", "\t25 a 29 anos & fx\\_idade\\_s & 25 a 29 anos & 2019 & S016P & 0.9121180 & 0.8854396 & 0.9387963 & 0.01492314\\\\\n", "\t30 a 39 anos & fx\\_idade\\_s & 30 a 39 anos & 2019 & S016P & 0.8996282 & 0.8718667 & 0.9273898 & 0.01574462\\\\\n", "\t40 anos ou mais & fx\\_idade\\_s & 40 anos ou mais & 2019 & S016P & 0.8549542 & 0.7687697 & 0.9411388 & 0.05143260\\\\\n", "\turbano & urb\\_rur & urbano & 2019 & S016P & 0.9007125 & 0.8821043 & 0.9193208 & 0.01054074\\\\\n", "\trural & urb\\_rur & rural & 2019 & S016P & 0.8541637 & 0.8152466 & 0.8930807 & 0.02324614\\\\\n", "\tRondônia & uf & Rondônia & 2019 & S016P & 0.9657274 & 0.9374381 & 0.9940167 & 0.01494582\\\\\n", "\tAcre & uf & Acre & 2019 & S016P & 0.9341028 & 0.8604602 & 1.0077454 & 0.04022411\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & S016P & 0.9073433 & 0.8454635 & 0.9692231 & 0.03479597\\\\\n", "\tRoraima & uf & Roraima & 2019 & S016P & 0.7734318 & 0.6039876 & 0.9428759 & 0.11177804\\\\\n", "\tPará & uf & Pará & 2019 & S016P & 0.9134246 & 0.8575382 & 0.9693110 & 0.03121660\\\\\n", "\tAmapá & uf & Amapá & 2019 & S016P & 0.9555542 & 0.8885170 & 1.0225915 & 0.03579421\\\\\n", "\tTocantins & uf & Tocantins & 2019 & S016P & 0.8106428 & 0.6778693 & 0.9434163 & 0.08356679\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & S016P & 0.8095186 & 0.7336835 & 0.8853537 & 0.04779642\\\\\n", "\tPiauí & uf & Piauí & 2019 & S016P & 0.9391357 & 0.8887311 & 0.9895403 & 0.02738380\\\\\n", "\tCeará & uf & Ceará & 2019 & S016P & 0.8040217 & 0.7193974 & 0.8886460 & 0.05370064\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S016P & 0.9353931 & 0.8588831 & 1.0119032 & 0.04173267\\\\\n", "\tParaíba & uf & Paraíba & 2019 & S016P & 0.8566499 & 0.7581708 & 0.9551291 & 0.05865337\\\\\n", "\tPernambuco & uf & Pernambuco & 2019 & S016P & 0.8711616 & 0.8068706 & 0.9354526 & 0.03765332\\\\\n", "\tAlagoas & uf & Alagoas & 2019 & S016P & 0.8033046 & 0.7070219 & 0.8995873 & 0.06115329\\\\\n", "\tSergipe & uf & Sergipe & 2019 & S016P & 0.8516848 & 0.7504449 & 0.9529247 & 0.06064918\\\\\n", "\tBahia & uf & Bahia & 2019 & S016P & 0.9096653 & 0.8455323 & 0.9737983 & 0.03597093\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tRio Branco3 & capital & Rio Branco & 2019 & S019P & 0.8528056 & 0.73447058 & 0.9711407 & 7.079706e-02\\\\\n", "\tManaus3 & capital & Manaus & 2019 & S019P & 0.8827997 & 0.77794640 & 0.9876530 & 6.059989e-02\\\\\n", "\tBoa Vista3 & capital & Boa Vista & 2019 & S019P & 0.8884627 & 0.79679075 & 0.9801346 & 5.264403e-02\\\\\n", "\tBelém3 & capital & Belém & 2019 & S019P & 0.9571920 & 0.89676894 & 1.0176151 & 3.220740e-02\\\\\n", "\tMacapá3 & capital & Macapá & 2019 & S019P & 0.4130939 & 0.06835764 & 0.7578301 & 4.257847e-01\\\\\n", "\tPalmas3 & capital & Palmas & 2019 & S019P & 1.0000000 & 1.00000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tSão Luís3 & capital & São Luís & 2019 & S019P & 0.9072290 & 0.79492742 & 1.0195307 & 6.315693e-02\\\\\n", "\tTeresina3 & capital & Teresina & 2019 & S019P & 1.0000000 & 1.00000000 & 1.0000000 & 2.414201e-17\\\\\n", "\tFortaleza3 & capital & Fortaleza & 2019 & S019P & 0.8528462 & 0.70056621 & 1.0051261 & 9.110117e-02\\\\\n", "\tNatal3 & capital & Natal & 2019 & S019P & 0.9574035 & 0.89567915 & 1.0191278 & 3.289375e-02\\\\\n", "\tJoão Pessoa3 & capital & João Pessoa & 2019 & S019P & 0.8469751 & 0.72489071 & 0.9690595 & 7.354301e-02\\\\\n", "\tRecife3 & capital & Recife & 2019 & S019P & 0.7957699 & 0.59439109 & 0.9971488 & 1.291155e-01\\\\\n", "\tMaceió3 & capital & Maceió & 2019 & S019P & 0.9052185 & 0.82355588 & 0.9868812 & 4.602799e-02\\\\\n", "\tAracaju3 & capital & Aracaju & 2019 & S019P & 0.8719312 & 0.72567301 & 1.0181894 & 8.558347e-02\\\\\n", "\tSalvador3 & capital & Salvador & 2019 & S019P & 0.9772048 & 0.93134998 & 1.0230596 & 2.394149e-02\\\\\n", "\tBelo Horizonte3 & capital & Belo Horizonte & 2019 & S019P & 0.8377275 & 0.71752331 & 0.9579316 & 7.320970e-02\\\\\n", "\tVitória3 & capital & Vitória & 2019 & S019P & 1.0000000 & 1.00000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tRio de Janeiro7 & capital & Rio de Janeiro & 2019 & S019P & 0.9813696 & 0.94454301 & 1.0181962 & 1.914613e-02\\\\\n", "\tSão Paulo6 & capital & São Paulo & 2019 & S019P & 0.9485502 & 0.89371537 & 1.0033849 & 2.949496e-02\\\\\n", "\tCuritiba3 & capital & Curitiba & 2019 & S019P & 0.8922268 & 0.69385031 & 1.0906034 & 1.134402e-01\\\\\n", "\tFlorianópolis3 & capital & Florianópolis & 2019 & S019P & 1.0000000 & 1.00000000 & 1.0000000 & 2.862188e-17\\\\\n", "\tPorto Alegre3 & capital & Porto Alegre & 2019 & S019P & 0.9766329 & 0.93037992 & 1.0228859 & 2.416353e-02\\\\\n", "\tCampo Grande3 & capital & Campo Grande & 2019 & S019P & 0.9786548 & 0.94878671 & 1.0085229 & 1.557148e-02\\\\\n", "\tCuiabá3 & capital & Cuiabá & 2019 & S019P & 0.9146546 & 0.79753409 & 1.0317751 & 6.533226e-02\\\\\n", "\tGoiânia3 & capital & Goiânia & 2019 & S019P & 0.8985256 & 0.76221954 & 1.0348317 & 7.739925e-02\\\\\n", "\tBrasília3 & capital & Brasília & 2019 & S019P & 0.8662223 & 0.73669275 & 0.9957519 & 7.629419e-02\\\\\n", "\tFundamental incompleto ou equivalente3 & gescol & Fundamental incompleto ou equivalente & 2019 & S019P & 0.7421529 & 0.68603013 & 0.7982757 & 3.858315e-02\\\\\n", "\tMédio incompleto ou equivalente3 & gescol & Médio incompleto ou equivalente & 2019 & S019P & 0.8300336 & 0.78011145 & 0.8799558 & 3.068667e-02\\\\\n", "\tSuperior incompleto ou equivalente3 & gescol & Superior incompleto ou equivalente & 2019 & S019P & 0.9019019 & 0.87235022 & 0.9314535 & 1.671761e-02\\\\\n", "\tSuperior completo3 & gescol & Superior completo & 2019 & S019P & 0.9757760 & 0.95978718 & 0.9917647 & 8.360210e-03\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 308 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2019 | S016P | 0.8747043 | 0.8394447 | 0.9099639 | 0.02056687 |\n", "| Preta | raça | Preta | 2019 | S016P | 0.9270440 | 0.8819540 | 0.9721340 | 0.02481599 |\n", "| Parda | raça | Parda | 2019 | S016P | 0.8998264 | 0.8813427 | 0.9183100 | 0.01048046 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S016P | 0.8811666 | 0.8556610 | 0.9066723 | 0.01476830 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S016P | 0.8986344 | 0.8672705 | 0.9299982 | 0.01780731 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S016P | 0.9321180 | 0.8983597 | 0.9658762 | 0.01847824 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S016P | 0.9131325 | 0.8480609 | 0.9782041 | 0.03635882 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S016P | 0.8449011 | 0.7501941 | 0.9396081 | 0.05719106 |\n", "| 18 a 24 anos | fx_idade_s | 18 a 24 anos | 2019 | S016P | 0.8784567 | 0.8471783 | 0.9097351 | 0.01816671 |\n", "| 25 a 29 anos | fx_idade_s | 25 a 29 anos | 2019 | S016P | 0.9121180 | 0.8854396 | 0.9387963 | 0.01492314 |\n", "| 30 a 39 anos | fx_idade_s | 30 a 39 anos | 2019 | S016P | 0.8996282 | 0.8718667 | 0.9273898 | 0.01574462 |\n", "| 40 anos ou mais | fx_idade_s | 40 anos ou mais | 2019 | S016P | 0.8549542 | 0.7687697 | 0.9411388 | 0.05143260 |\n", "| urbano | urb_rur | urbano | 2019 | S016P | 0.9007125 | 0.8821043 | 0.9193208 | 0.01054074 |\n", "| rural | urb_rur | rural | 2019 | S016P | 0.8541637 | 0.8152466 | 0.8930807 | 0.02324614 |\n", "| Rondônia | uf | Rondônia | 2019 | S016P | 0.9657274 | 0.9374381 | 0.9940167 | 0.01494582 |\n", "| Acre | uf | Acre | 2019 | S016P | 0.9341028 | 0.8604602 | 1.0077454 | 0.04022411 |\n", "| Amazonas | uf | Amazonas | 2019 | S016P | 0.9073433 | 0.8454635 | 0.9692231 | 0.03479597 |\n", "| Roraima | uf | Roraima | 2019 | S016P | 0.7734318 | 0.6039876 | 0.9428759 | 0.11177804 |\n", "| Pará | uf | Pará | 2019 | S016P | 0.9134246 | 0.8575382 | 0.9693110 | 0.03121660 |\n", "| Amapá | uf | Amapá | 2019 | S016P | 0.9555542 | 0.8885170 | 1.0225915 | 0.03579421 |\n", "| Tocantins | uf | Tocantins | 2019 | S016P | 0.8106428 | 0.6778693 | 0.9434163 | 0.08356679 |\n", "| Maranhão | uf | Maranhão | 2019 | S016P | 0.8095186 | 0.7336835 | 0.8853537 | 0.04779642 |\n", "| Piauí | uf | Piauí | 2019 | S016P | 0.9391357 | 0.8887311 | 0.9895403 | 0.02738380 |\n", "| Ceará | uf | Ceará | 2019 | S016P | 0.8040217 | 0.7193974 | 0.8886460 | 0.05370064 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S016P | 0.9353931 | 0.8588831 | 1.0119032 | 0.04173267 |\n", "| Paraíba | uf | Paraíba | 2019 | S016P | 0.8566499 | 0.7581708 | 0.9551291 | 0.05865337 |\n", "| Pernambuco | uf | Pernambuco | 2019 | S016P | 0.8711616 | 0.8068706 | 0.9354526 | 0.03765332 |\n", "| Alagoas | uf | Alagoas | 2019 | S016P | 0.8033046 | 0.7070219 | 0.8995873 | 0.06115329 |\n", "| Sergipe | uf | Sergipe | 2019 | S016P | 0.8516848 | 0.7504449 | 0.9529247 | 0.06064918 |\n", "| Bahia | uf | Bahia | 2019 | S016P | 0.9096653 | 0.8455323 | 0.9737983 | 0.03597093 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Rio Branco3 | capital | Rio Branco | 2019 | S019P | 0.8528056 | 0.73447058 | 0.9711407 | 7.079706e-02 |\n", "| Manaus3 | capital | Manaus | 2019 | S019P | 0.8827997 | 0.77794640 | 0.9876530 | 6.059989e-02 |\n", "| Boa Vista3 | capital | Boa Vista | 2019 | S019P | 0.8884627 | 0.79679075 | 0.9801346 | 5.264403e-02 |\n", "| Belém3 | capital | Belém | 2019 | S019P | 0.9571920 | 0.89676894 | 1.0176151 | 3.220740e-02 |\n", "| Macapá3 | capital | Macapá | 2019 | S019P | 0.4130939 | 0.06835764 | 0.7578301 | 4.257847e-01 |\n", "| Palmas3 | capital | Palmas | 2019 | S019P | 1.0000000 | 1.00000000 | 1.0000000 | 0.000000e+00 |\n", "| São Luís3 | capital | São Luís | 2019 | S019P | 0.9072290 | 0.79492742 | 1.0195307 | 6.315693e-02 |\n", "| Teresina3 | capital | Teresina | 2019 | S019P | 1.0000000 | 1.00000000 | 1.0000000 | 2.414201e-17 |\n", "| Fortaleza3 | capital | Fortaleza | 2019 | S019P | 0.8528462 | 0.70056621 | 1.0051261 | 9.110117e-02 |\n", "| Natal3 | capital | Natal | 2019 | S019P | 0.9574035 | 0.89567915 | 1.0191278 | 3.289375e-02 |\n", "| João Pessoa3 | capital | João Pessoa | 2019 | S019P | 0.8469751 | 0.72489071 | 0.9690595 | 7.354301e-02 |\n", "| Recife3 | capital | Recife | 2019 | S019P | 0.7957699 | 0.59439109 | 0.9971488 | 1.291155e-01 |\n", "| Maceió3 | capital | Maceió | 2019 | S019P | 0.9052185 | 0.82355588 | 0.9868812 | 4.602799e-02 |\n", "| Aracaju3 | capital | Aracaju | 2019 | S019P | 0.8719312 | 0.72567301 | 1.0181894 | 8.558347e-02 |\n", "| Salvador3 | capital | Salvador | 2019 | S019P | 0.9772048 | 0.93134998 | 1.0230596 | 2.394149e-02 |\n", "| Belo Horizonte3 | capital | Belo Horizonte | 2019 | S019P | 0.8377275 | 0.71752331 | 0.9579316 | 7.320970e-02 |\n", "| Vitória3 | capital | Vitória | 2019 | S019P | 1.0000000 | 1.00000000 | 1.0000000 | 0.000000e+00 |\n", "| Rio de Janeiro7 | capital | Rio de Janeiro | 2019 | S019P | 0.9813696 | 0.94454301 | 1.0181962 | 1.914613e-02 |\n", "| São Paulo6 | capital | São Paulo | 2019 | S019P | 0.9485502 | 0.89371537 | 1.0033849 | 2.949496e-02 |\n", "| Curitiba3 | capital | Curitiba | 2019 | S019P | 0.8922268 | 0.69385031 | 1.0906034 | 1.134402e-01 |\n", "| Florianópolis3 | capital | Florianópolis | 2019 | S019P | 1.0000000 | 1.00000000 | 1.0000000 | 2.862188e-17 |\n", "| Porto Alegre3 | capital | Porto Alegre | 2019 | S019P | 0.9766329 | 0.93037992 | 1.0228859 | 2.416353e-02 |\n", "| Campo Grande3 | capital | Campo Grande | 2019 | S019P | 0.9786548 | 0.94878671 | 1.0085229 | 1.557148e-02 |\n", "| Cuiabá3 | capital | Cuiabá | 2019 | S019P | 0.9146546 | 0.79753409 | 1.0317751 | 6.533226e-02 |\n", "| Goiânia3 | capital | Goiânia | 2019 | S019P | 0.8985256 | 0.76221954 | 1.0348317 | 7.739925e-02 |\n", "| Brasília3 | capital | Brasília | 2019 | S019P | 0.8662223 | 0.73669275 | 0.9957519 | 7.629419e-02 |\n", "| Fundamental incompleto ou equivalente3 | gescol | Fundamental incompleto ou equivalente | 2019 | S019P | 0.7421529 | 0.68603013 | 0.7982757 | 3.858315e-02 |\n", "| Médio incompleto ou equivalente3 | gescol | Médio incompleto ou equivalente | 2019 | S019P | 0.8300336 | 0.78011145 | 0.8799558 | 3.068667e-02 |\n", "| Superior incompleto ou equivalente3 | gescol | Superior incompleto ou equivalente | 2019 | S019P | 0.9019019 | 0.87235022 | 0.9314535 | 1.671761e-02 |\n", "| Superior completo3 | gescol | Superior completo | 2019 | S019P | 0.9757760 | 0.95978718 | 0.9917647 | 8.360210e-03 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_s \n", "25 a 29 anos fx_idade_s \n", "30 a 39 anos fx_idade_s \n", "40 anos ou mais fx_idade_s \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "Rio Branco3 capital \n", "Manaus3 capital \n", "Boa Vista3 capital \n", "Belém3 capital \n", "Macapá3 capital \n", "Palmas3 capital \n", "São Luís3 capital \n", "Teresina3 capital \n", "Fortaleza3 capital \n", "Natal3 capital \n", "João Pessoa3 capital \n", "Recife3 capital \n", "Maceió3 capital \n", "Aracaju3 capital \n", "Salvador3 capital \n", "Belo Horizonte3 capital \n", "Vitória3 capital \n", "Rio de Janeiro7 capital \n", "São Paulo6 capital \n", "Curitiba3 capital \n", "Florianópolis3 capital \n", "Porto Alegre3 capital \n", "Campo Grande3 capital \n", "Cuiabá3 capital \n", "Goiânia3 capital \n", "Brasília3 capital \n", "Fundamental incompleto ou equivalente3 gescol \n", "Médio incompleto ou equivalente3 gescol \n", "Superior incompleto ou equivalente3 gescol \n", "Superior completo3 gescol \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "Rio Branco3 Rio Branco \n", "Manaus3 Manaus \n", "Boa Vista3 Boa Vista \n", "Belém3 Belém \n", "Macapá3 Macapá \n", "Palmas3 Palmas \n", "São Luís3 São Luís \n", "Teresina3 Teresina \n", "Fortaleza3 Fortaleza \n", "Natal3 Natal \n", "João Pessoa3 João Pessoa \n", "Recife3 Recife \n", "Maceió3 Maceió \n", "Aracaju3 Aracaju \n", "Salvador3 Salvador \n", "Belo Horizonte3 Belo Horizonte \n", "Vitória3 Vitória \n", "Rio de Janeiro7 Rio de Janeiro \n", "São Paulo6 São Paulo \n", "Curitiba3 Curitiba \n", "Florianópolis3 Florianópolis \n", "Porto Alegre3 Porto Alegre \n", "Campo Grande3 Campo Grande \n", "Cuiabá3 Cuiabá \n", "Goiânia3 Goiânia \n", "Brasília3 Brasília \n", "Fundamental incompleto ou equivalente3 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente3 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente3 Superior incompleto ou equivalente \n", "Superior completo3 Superior completo \n", " Ano Indicador Sim LowerS \n", "Branca 2019 S016P 0.8747043 0.8394447 \n", "Preta 2019 S016P 0.9270440 0.8819540 \n", "Parda 2019 S016P 0.8998264 0.8813427 \n", "Até 1/2 SM 2019 S016P 0.8811666 0.8556610 \n", "1/2 até 1 SM 2019 S016P 0.8986344 0.8672705 \n", "1 até 2 SM 2019 S016P 0.9321180 0.8983597 \n", "2 até 3 SM 2019 S016P 0.9131325 0.8480609 \n", "Mais de 3 SM 2019 S016P 0.8449011 0.7501941 \n", "18 a 24 anos 2019 S016P 0.8784567 0.8471783 \n", "25 a 29 anos 2019 S016P 0.9121180 0.8854396 \n", "30 a 39 anos 2019 S016P 0.8996282 0.8718667 \n", "40 anos ou mais 2019 S016P 0.8549542 0.7687697 \n", "urbano 2019 S016P 0.9007125 0.8821043 \n", "rural 2019 S016P 0.8541637 0.8152466 \n", "Rondônia 2019 S016P 0.9657274 0.9374381 \n", "Acre 2019 S016P 0.9341028 0.8604602 \n", "Amazonas 2019 S016P 0.9073433 0.8454635 \n", "Roraima 2019 S016P 0.7734318 0.6039876 \n", "Pará 2019 S016P 0.9134246 0.8575382 \n", "Amapá 2019 S016P 0.9555542 0.8885170 \n", "Tocantins 2019 S016P 0.8106428 0.6778693 \n", "Maranhão 2019 S016P 0.8095186 0.7336835 \n", "Piauí 2019 S016P 0.9391357 0.8887311 \n", "Ceará 2019 S016P 0.8040217 0.7193974 \n", "Rio Grande do Norte 2019 S016P 0.9353931 0.8588831 \n", "Paraíba 2019 S016P 0.8566499 0.7581708 \n", "Pernambuco 2019 S016P 0.8711616 0.8068706 \n", "Alagoas 2019 S016P 0.8033046 0.7070219 \n", "Sergipe 2019 S016P 0.8516848 0.7504449 \n", "Bahia 2019 S016P 0.9096653 0.8455323 \n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "Rio Branco3 2019 S019P 0.8528056 0.73447058\n", "Manaus3 2019 S019P 0.8827997 0.77794640\n", "Boa Vista3 2019 S019P 0.8884627 0.79679075\n", "Belém3 2019 S019P 0.9571920 0.89676894\n", "Macapá3 2019 S019P 0.4130939 0.06835764\n", "Palmas3 2019 S019P 1.0000000 1.00000000\n", "São Luís3 2019 S019P 0.9072290 0.79492742\n", "Teresina3 2019 S019P 1.0000000 1.00000000\n", "Fortaleza3 2019 S019P 0.8528462 0.70056621\n", "Natal3 2019 S019P 0.9574035 0.89567915\n", "João Pessoa3 2019 S019P 0.8469751 0.72489071\n", "Recife3 2019 S019P 0.7957699 0.59439109\n", "Maceió3 2019 S019P 0.9052185 0.82355588\n", "Aracaju3 2019 S019P 0.8719312 0.72567301\n", "Salvador3 2019 S019P 0.9772048 0.93134998\n", "Belo Horizonte3 2019 S019P 0.8377275 0.71752331\n", "Vitória3 2019 S019P 1.0000000 1.00000000\n", "Rio de Janeiro7 2019 S019P 0.9813696 0.94454301\n", "São Paulo6 2019 S019P 0.9485502 0.89371537\n", "Curitiba3 2019 S019P 0.8922268 0.69385031\n", "Florianópolis3 2019 S019P 1.0000000 1.00000000\n", "Porto Alegre3 2019 S019P 0.9766329 0.93037992\n", "Campo Grande3 2019 S019P 0.9786548 0.94878671\n", "Cuiabá3 2019 S019P 0.9146546 0.79753409\n", "Goiânia3 2019 S019P 0.8985256 0.76221954\n", "Brasília3 2019 S019P 0.8662223 0.73669275\n", "Fundamental incompleto ou equivalente3 2019 S019P 0.7421529 0.68603013\n", "Médio incompleto ou equivalente3 2019 S019P 0.8300336 0.78011145\n", "Superior incompleto ou equivalente3 2019 S019P 0.9019019 0.87235022\n", "Superior completo3 2019 S019P 0.9757760 0.95978718\n", " UpperS cvS \n", "Branca 0.9099639 0.02056687 \n", "Preta 0.9721340 0.02481599 \n", "Parda 0.9183100 0.01048046 \n", "Até 1/2 SM 0.9066723 0.01476830 \n", "1/2 até 1 SM 0.9299982 0.01780731 \n", "1 até 2 SM 0.9658762 0.01847824 \n", "2 até 3 SM 0.9782041 0.03635882 \n", "Mais de 3 SM 0.9396081 0.05719106 \n", "18 a 24 anos 0.9097351 0.01816671 \n", "25 a 29 anos 0.9387963 0.01492314 \n", "30 a 39 anos 0.9273898 0.01574462 \n", "40 anos ou mais 0.9411388 0.05143260 \n", "urbano 0.9193208 0.01054074 \n", "rural 0.8930807 0.02324614 \n", "Rondônia 0.9940167 0.01494582 \n", "Acre 1.0077454 0.04022411 \n", "Amazonas 0.9692231 0.03479597 \n", "Roraima 0.9428759 0.11177804 \n", "Pará 0.9693110 0.03121660 \n", "Amapá 1.0225915 0.03579421 \n", "Tocantins 0.9434163 0.08356679 \n", "Maranhão 0.8853537 0.04779642 \n", "Piauí 0.9895403 0.02738380 \n", "Ceará 0.8886460 0.05370064 \n", "Rio Grande do Norte 1.0119032 0.04173267 \n", "Paraíba 0.9551291 0.05865337 \n", "Pernambuco 0.9354526 0.03765332 \n", "Alagoas 0.8995873 0.06115329 \n", "Sergipe 0.9529247 0.06064918 \n", "Bahia 0.9737983 0.03597093 \n", "⋮ ⋮ ⋮ \n", "Rio Branco3 0.9711407 7.079706e-02\n", "Manaus3 0.9876530 6.059989e-02\n", "Boa Vista3 0.9801346 5.264403e-02\n", "Belém3 1.0176151 3.220740e-02\n", "Macapá3 0.7578301 4.257847e-01\n", "Palmas3 1.0000000 0.000000e+00\n", "São Luís3 1.0195307 6.315693e-02\n", "Teresina3 1.0000000 2.414201e-17\n", "Fortaleza3 1.0051261 9.110117e-02\n", "Natal3 1.0191278 3.289375e-02\n", "João Pessoa3 0.9690595 7.354301e-02\n", "Recife3 0.9971488 1.291155e-01\n", "Maceió3 0.9868812 4.602799e-02\n", "Aracaju3 1.0181894 8.558347e-02\n", "Salvador3 1.0230596 2.394149e-02\n", "Belo Horizonte3 0.9579316 7.320970e-02\n", "Vitória3 1.0000000 0.000000e+00\n", "Rio de Janeiro7 1.0181962 1.914613e-02\n", "São Paulo6 1.0033849 2.949496e-02\n", "Curitiba3 1.0906034 1.134402e-01\n", "Florianópolis3 1.0000000 2.862188e-17\n", "Porto Alegre3 1.0228859 2.416353e-02\n", "Campo Grande3 1.0085229 1.557148e-02\n", "Cuiabá3 1.0317751 6.533226e-02\n", "Goiânia3 1.0348317 7.739925e-02\n", "Brasília3 0.9957519 7.629419e-02\n", "Fundamental incompleto ou equivalente3 0.7982757 3.858315e-02\n", "Médio incompleto ou equivalente3 0.8799558 3.068667e-02\n", "Superior incompleto ou equivalente3 0.9314535 1.671761e-02\n", "Superior completo3 0.9917647 8.360210e-03" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- popula_indicadores(design_por_abrangencia, totais, indicadores, Ano, \"total\")" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 8 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><chr><chr><chr><dbl><dbl><dbl><dbl>
S016PSimtotalBrasil 2019S016P0.89360080.87673890.91046270.00962753
S016PSim1totalCapital2019S016P0.87090170.83007060.91173280.02392071
S017PSimtotalBrasil 2019S017P0.87310660.85394980.89226340.01119456
S017PSim1totalCapital2019S017P0.84880050.80549840.89210250.02602884
S018PSimtotalBrasil 2019S018P0.83204750.80935230.85474280.01391678
S018PSim1totalCapital2019S018P0.87177830.84141780.90213870.01776864
S019PSimtotalBrasil 2019S019P0.87314210.85287930.89340490.01184042
S019PSim1totalCapital2019S019P0.90943610.88228970.93658250.01522971
\n" ], "text/latex": [ "A data.frame: 8 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tS016PSim & total & Brasil & 2019 & S016P & 0.8936008 & 0.8767389 & 0.9104627 & 0.00962753\\\\\n", "\tS016PSim1 & total & Capital & 2019 & S016P & 0.8709017 & 0.8300706 & 0.9117328 & 0.02392071\\\\\n", "\tS017PSim & total & Brasil & 2019 & S017P & 0.8731066 & 0.8539498 & 0.8922634 & 0.01119456\\\\\n", "\tS017PSim1 & total & Capital & 2019 & S017P & 0.8488005 & 0.8054984 & 0.8921025 & 0.02602884\\\\\n", "\tS018PSim & total & Brasil & 2019 & S018P & 0.8320475 & 0.8093523 & 0.8547428 & 0.01391678\\\\\n", "\tS018PSim1 & total & Capital & 2019 & S018P & 0.8717783 & 0.8414178 & 0.9021387 & 0.01776864\\\\\n", "\tS019PSim & total & Brasil & 2019 & S019P & 0.8731421 & 0.8528793 & 0.8934049 & 0.01184042\\\\\n", "\tS019PSim1 & total & Capital & 2019 & S019P & 0.9094361 & 0.8822897 & 0.9365825 & 0.01522971\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 8 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| S016PSim | total | Brasil | 2019 | S016P | 0.8936008 | 0.8767389 | 0.9104627 | 0.00962753 |\n", "| S016PSim1 | total | Capital | 2019 | S016P | 0.8709017 | 0.8300706 | 0.9117328 | 0.02392071 |\n", "| S017PSim | total | Brasil | 2019 | S017P | 0.8731066 | 0.8539498 | 0.8922634 | 0.01119456 |\n", "| S017PSim1 | total | Capital | 2019 | S017P | 0.8488005 | 0.8054984 | 0.8921025 | 0.02602884 |\n", "| S018PSim | total | Brasil | 2019 | S018P | 0.8320475 | 0.8093523 | 0.8547428 | 0.01391678 |\n", "| S018PSim1 | total | Capital | 2019 | S018P | 0.8717783 | 0.8414178 | 0.9021387 | 0.01776864 |\n", "| S019PSim | total | Brasil | 2019 | S019P | 0.8731421 | 0.8528793 | 0.8934049 | 0.01184042 |\n", "| S019PSim1 | total | Capital | 2019 | S019P | 0.9094361 | 0.8822897 | 0.9365825 | 0.01522971 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n", "S016PSim total Brasil 2019 S016P 0.8936008 0.8767389 0.9104627\n", "S016PSim1 total Capital 2019 S016P 0.8709017 0.8300706 0.9117328\n", "S017PSim total Brasil 2019 S017P 0.8731066 0.8539498 0.8922634\n", "S017PSim1 total Capital 2019 S017P 0.8488005 0.8054984 0.8921025\n", "S018PSim total Brasil 2019 S018P 0.8320475 0.8093523 0.8547428\n", "S018PSim1 total Capital 2019 S018P 0.8717783 0.8414178 0.9021387\n", "S019PSim total Brasil 2019 S019P 0.8731421 0.8528793 0.8934049\n", "S019PSim1 total Capital 2019 S019P 0.9094361 0.8822897 0.9365825\n", " cvS \n", "S016PSim 0.00962753\n", "S016PSim1 0.02392071\n", "S017PSim 0.01119456\n", "S017PSim1 0.02602884\n", "S018PSim 0.01391678\n", "S018PSim1 0.01776864\n", "S019PSim 0.01184042\n", "S019PSim1 0.01522971" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_totais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "matriz_final <-rbind(matriz_indicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 316 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2019S016P0.87470430.83944470.90996390.02056687
Pretaraça Preta 2019S016P0.92704400.88195400.97213400.02481599
Pardaraça Parda 2019S016P0.89982640.88134270.91831000.01048046
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019S016P0.88116660.85566100.90667230.01476830
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019S016P0.89863440.86727050.92999820.01780731
1 até 2 SMrend_per_capita1 até 2 SM 2019S016P0.93211800.89835970.96587620.01847824
2 até 3 SMrend_per_capita2 até 3 SM 2019S016P0.91313250.84806090.97820410.03635882
Mais de 3 SMrend_per_capitaMais de 3 SM 2019S016P0.84490110.75019410.93960810.05719106
18 a 24 anosfx_idade_s 18 a 24 anos 2019S016P0.87845670.84717830.90973510.01816671
25 a 29 anosfx_idade_s 25 a 29 anos 2019S016P0.91211800.88543960.93879630.01492314
30 a 39 anosfx_idade_s 30 a 39 anos 2019S016P0.89962820.87186670.92738980.01574462
40 anos ou maisfx_idade_s 40 anos ou mais 2019S016P0.85495420.76876970.94113880.05143260
urbanourb_rur urbano 2019S016P0.90071250.88210430.91932080.01054074
ruralurb_rur rural 2019S016P0.85416370.81524660.89308070.02324614
Rondôniauf Rondônia 2019S016P0.96572740.93743810.99401670.01494582
Acreuf Acre 2019S016P0.93410280.86046021.00774540.04022411
Amazonasuf Amazonas 2019S016P0.90734330.84546350.96922310.03479597
Roraimauf Roraima 2019S016P0.77343180.60398760.94287590.11177804
Paráuf Pará 2019S016P0.91342460.85753820.96931100.03121660
Amapáuf Amapá 2019S016P0.95555420.88851701.02259150.03579421
Tocantinsuf Tocantins 2019S016P0.81064280.67786930.94341630.08356679
Maranhãouf Maranhão 2019S016P0.80951860.73368350.88535370.04779642
Piauíuf Piauí 2019S016P0.93913570.88873110.98954030.02738380
Cearáuf Ceará 2019S016P0.80402170.71939740.88864600.05370064
Rio Grande do Norteuf Rio Grande do Norte2019S016P0.93539310.85888311.01190320.04173267
Paraíbauf Paraíba 2019S016P0.85664990.75817080.95512910.05865337
Pernambucouf Pernambuco 2019S016P0.87116160.80687060.93545260.03765332
Alagoasuf Alagoas 2019S016P0.80330460.70702190.89958730.06115329
Sergipeuf Sergipe 2019S016P0.85168480.75044490.95292470.06064918
Bahiauf Bahia 2019S016P0.90966530.84553230.97379830.03597093
Fortaleza3capitalFortaleza 2019S019P0.85284620.70056621.00512619.110117e-02
Natal3capitalNatal 2019S019P0.95740350.89567911.01912783.289375e-02
João Pessoa3capitalJoão Pessoa 2019S019P0.84697510.72489070.96905957.354301e-02
Recife3capitalRecife 2019S019P0.79576990.59439110.99714881.291155e-01
Maceió3capitalMaceió 2019S019P0.90521850.82355590.98688124.602799e-02
Aracaju3capitalAracaju 2019S019P0.87193120.72567301.01818948.558347e-02
Salvador3capitalSalvador 2019S019P0.97720480.93135001.02305962.394149e-02
Belo Horizonte3capitalBelo Horizonte 2019S019P0.83772750.71752330.95793167.320970e-02
Vitória3capitalVitória 2019S019P1.00000001.00000001.00000000.000000e+00
Rio de Janeiro7capitalRio de Janeiro 2019S019P0.98136960.94454301.01819621.914613e-02
São Paulo6capitalSão Paulo 2019S019P0.94855020.89371541.00338492.949496e-02
Curitiba3capitalCuritiba 2019S019P0.89222680.69385031.09060341.134402e-01
Florianópolis3capitalFlorianópolis 2019S019P1.00000001.00000001.00000002.862188e-17
Porto Alegre3capitalPorto Alegre 2019S019P0.97663290.93037991.02288592.416353e-02
Campo Grande3capitalCampo Grande 2019S019P0.97865480.94878671.00852291.557148e-02
Cuiabá3capitalCuiabá 2019S019P0.91465460.79753411.03177516.533226e-02
Goiânia3capitalGoiânia 2019S019P0.89852560.76221951.03483177.739925e-02
Brasília3capitalBrasília 2019S019P0.86622230.73669270.99575197.629419e-02
Fundamental incompleto ou equivalente3gescol Fundamental incompleto ou equivalente2019S019P0.74215290.68603010.79827573.858315e-02
Médio incompleto ou equivalente3gescol Médio incompleto ou equivalente 2019S019P0.83003360.78011150.87995583.068667e-02
Superior incompleto ou equivalente3gescol Superior incompleto ou equivalente 2019S019P0.90190190.87235020.93145351.671761e-02
Superior completo3gescol Superior completo 2019S019P0.97577600.95978720.99176478.360210e-03
S016PSimtotal Brasil 2019S016P0.89360080.87673890.91046279.627530e-03
S016PSim1total Capital 2019S016P0.87090170.83007060.91173282.392071e-02
S017PSimtotal Brasil 2019S017P0.87310660.85394980.89226341.119456e-02
S017PSim1total Capital 2019S017P0.84880050.80549840.89210252.602884e-02
S018PSimtotal Brasil 2019S018P0.83204750.80935230.85474281.391678e-02
S018PSim1total Capital 2019S018P0.87177830.84141780.90213871.776864e-02
S019PSimtotal Brasil 2019S019P0.87314210.85287930.89340491.184042e-02
S019PSim1total Capital 2019S019P0.90943610.88228970.93658251.522971e-02
\n" ], "text/latex": [ "A data.frame: 316 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2019 & S016P & 0.8747043 & 0.8394447 & 0.9099639 & 0.02056687\\\\\n", "\tPreta & raça & Preta & 2019 & S016P & 0.9270440 & 0.8819540 & 0.9721340 & 0.02481599\\\\\n", "\tParda & raça & Parda & 2019 & S016P & 0.8998264 & 0.8813427 & 0.9183100 & 0.01048046\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S016P & 0.8811666 & 0.8556610 & 0.9066723 & 0.01476830\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S016P & 0.8986344 & 0.8672705 & 0.9299982 & 0.01780731\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S016P & 0.9321180 & 0.8983597 & 0.9658762 & 0.01847824\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S016P & 0.9131325 & 0.8480609 & 0.9782041 & 0.03635882\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S016P & 0.8449011 & 0.7501941 & 0.9396081 & 0.05719106\\\\\n", "\t18 a 24 anos & fx\\_idade\\_s & 18 a 24 anos & 2019 & S016P & 0.8784567 & 0.8471783 & 0.9097351 & 0.01816671\\\\\n", "\t25 a 29 anos & fx\\_idade\\_s & 25 a 29 anos & 2019 & S016P & 0.9121180 & 0.8854396 & 0.9387963 & 0.01492314\\\\\n", "\t30 a 39 anos & fx\\_idade\\_s & 30 a 39 anos & 2019 & S016P & 0.8996282 & 0.8718667 & 0.9273898 & 0.01574462\\\\\n", "\t40 anos ou mais & fx\\_idade\\_s & 40 anos ou mais & 2019 & S016P & 0.8549542 & 0.7687697 & 0.9411388 & 0.05143260\\\\\n", "\turbano & urb\\_rur & urbano & 2019 & S016P & 0.9007125 & 0.8821043 & 0.9193208 & 0.01054074\\\\\n", "\trural & urb\\_rur & rural & 2019 & S016P & 0.8541637 & 0.8152466 & 0.8930807 & 0.02324614\\\\\n", "\tRondônia & uf & Rondônia & 2019 & S016P & 0.9657274 & 0.9374381 & 0.9940167 & 0.01494582\\\\\n", "\tAcre & uf & Acre & 2019 & S016P & 0.9341028 & 0.8604602 & 1.0077454 & 0.04022411\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & S016P & 0.9073433 & 0.8454635 & 0.9692231 & 0.03479597\\\\\n", "\tRoraima & uf & Roraima & 2019 & S016P & 0.7734318 & 0.6039876 & 0.9428759 & 0.11177804\\\\\n", "\tPará & uf & Pará & 2019 & S016P & 0.9134246 & 0.8575382 & 0.9693110 & 0.03121660\\\\\n", "\tAmapá & uf & Amapá & 2019 & S016P & 0.9555542 & 0.8885170 & 1.0225915 & 0.03579421\\\\\n", "\tTocantins & uf & Tocantins & 2019 & S016P & 0.8106428 & 0.6778693 & 0.9434163 & 0.08356679\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & S016P & 0.8095186 & 0.7336835 & 0.8853537 & 0.04779642\\\\\n", "\tPiauí & uf & Piauí & 2019 & S016P & 0.9391357 & 0.8887311 & 0.9895403 & 0.02738380\\\\\n", "\tCeará & uf & Ceará & 2019 & S016P & 0.8040217 & 0.7193974 & 0.8886460 & 0.05370064\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S016P & 0.9353931 & 0.8588831 & 1.0119032 & 0.04173267\\\\\n", "\tParaíba & uf & Paraíba & 2019 & S016P & 0.8566499 & 0.7581708 & 0.9551291 & 0.05865337\\\\\n", "\tPernambuco & uf & Pernambuco & 2019 & S016P & 0.8711616 & 0.8068706 & 0.9354526 & 0.03765332\\\\\n", "\tAlagoas & uf & Alagoas & 2019 & S016P & 0.8033046 & 0.7070219 & 0.8995873 & 0.06115329\\\\\n", "\tSergipe & uf & Sergipe & 2019 & S016P & 0.8516848 & 0.7504449 & 0.9529247 & 0.06064918\\\\\n", "\tBahia & uf & Bahia & 2019 & S016P & 0.9096653 & 0.8455323 & 0.9737983 & 0.03597093\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tFortaleza3 & capital & Fortaleza & 2019 & S019P & 0.8528462 & 0.7005662 & 1.0051261 & 9.110117e-02\\\\\n", "\tNatal3 & capital & Natal & 2019 & S019P & 0.9574035 & 0.8956791 & 1.0191278 & 3.289375e-02\\\\\n", "\tJoão Pessoa3 & capital & João Pessoa & 2019 & S019P & 0.8469751 & 0.7248907 & 0.9690595 & 7.354301e-02\\\\\n", "\tRecife3 & capital & Recife & 2019 & S019P & 0.7957699 & 0.5943911 & 0.9971488 & 1.291155e-01\\\\\n", "\tMaceió3 & capital & Maceió & 2019 & S019P & 0.9052185 & 0.8235559 & 0.9868812 & 4.602799e-02\\\\\n", "\tAracaju3 & capital & Aracaju & 2019 & S019P & 0.8719312 & 0.7256730 & 1.0181894 & 8.558347e-02\\\\\n", "\tSalvador3 & capital & Salvador & 2019 & S019P & 0.9772048 & 0.9313500 & 1.0230596 & 2.394149e-02\\\\\n", "\tBelo Horizonte3 & capital & Belo Horizonte & 2019 & S019P & 0.8377275 & 0.7175233 & 0.9579316 & 7.320970e-02\\\\\n", "\tVitória3 & capital & Vitória & 2019 & S019P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tRio de Janeiro7 & capital & Rio de Janeiro & 2019 & S019P & 0.9813696 & 0.9445430 & 1.0181962 & 1.914613e-02\\\\\n", "\tSão Paulo6 & capital & São Paulo & 2019 & S019P & 0.9485502 & 0.8937154 & 1.0033849 & 2.949496e-02\\\\\n", "\tCuritiba3 & capital & Curitiba & 2019 & S019P & 0.8922268 & 0.6938503 & 1.0906034 & 1.134402e-01\\\\\n", "\tFlorianópolis3 & capital & Florianópolis & 2019 & S019P & 1.0000000 & 1.0000000 & 1.0000000 & 2.862188e-17\\\\\n", "\tPorto Alegre3 & capital & Porto Alegre & 2019 & S019P & 0.9766329 & 0.9303799 & 1.0228859 & 2.416353e-02\\\\\n", "\tCampo Grande3 & capital & Campo Grande & 2019 & S019P & 0.9786548 & 0.9487867 & 1.0085229 & 1.557148e-02\\\\\n", "\tCuiabá3 & capital & Cuiabá & 2019 & S019P & 0.9146546 & 0.7975341 & 1.0317751 & 6.533226e-02\\\\\n", "\tGoiânia3 & capital & Goiânia & 2019 & S019P & 0.8985256 & 0.7622195 & 1.0348317 & 7.739925e-02\\\\\n", "\tBrasília3 & capital & Brasília & 2019 & S019P & 0.8662223 & 0.7366927 & 0.9957519 & 7.629419e-02\\\\\n", "\tFundamental incompleto ou equivalente3 & gescol & Fundamental incompleto ou equivalente & 2019 & S019P & 0.7421529 & 0.6860301 & 0.7982757 & 3.858315e-02\\\\\n", "\tMédio incompleto ou equivalente3 & gescol & Médio incompleto ou equivalente & 2019 & S019P & 0.8300336 & 0.7801115 & 0.8799558 & 3.068667e-02\\\\\n", "\tSuperior incompleto ou equivalente3 & gescol & Superior incompleto ou equivalente & 2019 & S019P & 0.9019019 & 0.8723502 & 0.9314535 & 1.671761e-02\\\\\n", "\tSuperior completo3 & gescol & Superior completo & 2019 & S019P & 0.9757760 & 0.9597872 & 0.9917647 & 8.360210e-03\\\\\n", "\tS016PSim & total & Brasil & 2019 & S016P & 0.8936008 & 0.8767389 & 0.9104627 & 9.627530e-03\\\\\n", "\tS016PSim1 & total & Capital & 2019 & S016P & 0.8709017 & 0.8300706 & 0.9117328 & 2.392071e-02\\\\\n", "\tS017PSim & total & Brasil & 2019 & S017P & 0.8731066 & 0.8539498 & 0.8922634 & 1.119456e-02\\\\\n", "\tS017PSim1 & total & Capital & 2019 & S017P & 0.8488005 & 0.8054984 & 0.8921025 & 2.602884e-02\\\\\n", "\tS018PSim & total & Brasil & 2019 & S018P & 0.8320475 & 0.8093523 & 0.8547428 & 1.391678e-02\\\\\n", "\tS018PSim1 & total & Capital & 2019 & S018P & 0.8717783 & 0.8414178 & 0.9021387 & 1.776864e-02\\\\\n", "\tS019PSim & total & Brasil & 2019 & S019P & 0.8731421 & 0.8528793 & 0.8934049 & 1.184042e-02\\\\\n", "\tS019PSim1 & total & Capital & 2019 & S019P & 0.9094361 & 0.8822897 & 0.9365825 & 1.522971e-02\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 316 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2019 | S016P | 0.8747043 | 0.8394447 | 0.9099639 | 0.02056687 |\n", "| Preta | raça | Preta | 2019 | S016P | 0.9270440 | 0.8819540 | 0.9721340 | 0.02481599 |\n", "| Parda | raça | Parda | 2019 | S016P | 0.8998264 | 0.8813427 | 0.9183100 | 0.01048046 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S016P | 0.8811666 | 0.8556610 | 0.9066723 | 0.01476830 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S016P | 0.8986344 | 0.8672705 | 0.9299982 | 0.01780731 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S016P | 0.9321180 | 0.8983597 | 0.9658762 | 0.01847824 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S016P | 0.9131325 | 0.8480609 | 0.9782041 | 0.03635882 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S016P | 0.8449011 | 0.7501941 | 0.9396081 | 0.05719106 |\n", "| 18 a 24 anos | fx_idade_s | 18 a 24 anos | 2019 | S016P | 0.8784567 | 0.8471783 | 0.9097351 | 0.01816671 |\n", "| 25 a 29 anos | fx_idade_s | 25 a 29 anos | 2019 | S016P | 0.9121180 | 0.8854396 | 0.9387963 | 0.01492314 |\n", "| 30 a 39 anos | fx_idade_s | 30 a 39 anos | 2019 | S016P | 0.8996282 | 0.8718667 | 0.9273898 | 0.01574462 |\n", "| 40 anos ou mais | fx_idade_s | 40 anos ou mais | 2019 | S016P | 0.8549542 | 0.7687697 | 0.9411388 | 0.05143260 |\n", "| urbano | urb_rur | urbano | 2019 | S016P | 0.9007125 | 0.8821043 | 0.9193208 | 0.01054074 |\n", "| rural | urb_rur | rural | 2019 | S016P | 0.8541637 | 0.8152466 | 0.8930807 | 0.02324614 |\n", "| Rondônia | uf | Rondônia | 2019 | S016P | 0.9657274 | 0.9374381 | 0.9940167 | 0.01494582 |\n", "| Acre | uf | Acre | 2019 | S016P | 0.9341028 | 0.8604602 | 1.0077454 | 0.04022411 |\n", "| Amazonas | uf | Amazonas | 2019 | S016P | 0.9073433 | 0.8454635 | 0.9692231 | 0.03479597 |\n", "| Roraima | uf | Roraima | 2019 | S016P | 0.7734318 | 0.6039876 | 0.9428759 | 0.11177804 |\n", "| Pará | uf | Pará | 2019 | S016P | 0.9134246 | 0.8575382 | 0.9693110 | 0.03121660 |\n", "| Amapá | uf | Amapá | 2019 | S016P | 0.9555542 | 0.8885170 | 1.0225915 | 0.03579421 |\n", "| Tocantins | uf | Tocantins | 2019 | S016P | 0.8106428 | 0.6778693 | 0.9434163 | 0.08356679 |\n", "| Maranhão | uf | Maranhão | 2019 | S016P | 0.8095186 | 0.7336835 | 0.8853537 | 0.04779642 |\n", "| Piauí | uf | Piauí | 2019 | S016P | 0.9391357 | 0.8887311 | 0.9895403 | 0.02738380 |\n", "| Ceará | uf | Ceará | 2019 | S016P | 0.8040217 | 0.7193974 | 0.8886460 | 0.05370064 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S016P | 0.9353931 | 0.8588831 | 1.0119032 | 0.04173267 |\n", "| Paraíba | uf | Paraíba | 2019 | S016P | 0.8566499 | 0.7581708 | 0.9551291 | 0.05865337 |\n", "| Pernambuco | uf | Pernambuco | 2019 | S016P | 0.8711616 | 0.8068706 | 0.9354526 | 0.03765332 |\n", "| Alagoas | uf | Alagoas | 2019 | S016P | 0.8033046 | 0.7070219 | 0.8995873 | 0.06115329 |\n", "| Sergipe | uf | Sergipe | 2019 | S016P | 0.8516848 | 0.7504449 | 0.9529247 | 0.06064918 |\n", "| Bahia | uf | Bahia | 2019 | S016P | 0.9096653 | 0.8455323 | 0.9737983 | 0.03597093 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Fortaleza3 | capital | Fortaleza | 2019 | S019P | 0.8528462 | 0.7005662 | 1.0051261 | 9.110117e-02 |\n", "| Natal3 | capital | Natal | 2019 | S019P | 0.9574035 | 0.8956791 | 1.0191278 | 3.289375e-02 |\n", "| João Pessoa3 | capital | João Pessoa | 2019 | S019P | 0.8469751 | 0.7248907 | 0.9690595 | 7.354301e-02 |\n", "| Recife3 | capital | Recife | 2019 | S019P | 0.7957699 | 0.5943911 | 0.9971488 | 1.291155e-01 |\n", "| Maceió3 | capital | Maceió | 2019 | S019P | 0.9052185 | 0.8235559 | 0.9868812 | 4.602799e-02 |\n", "| Aracaju3 | capital | Aracaju | 2019 | S019P | 0.8719312 | 0.7256730 | 1.0181894 | 8.558347e-02 |\n", "| Salvador3 | capital | Salvador | 2019 | S019P | 0.9772048 | 0.9313500 | 1.0230596 | 2.394149e-02 |\n", "| Belo Horizonte3 | capital | Belo Horizonte | 2019 | S019P | 0.8377275 | 0.7175233 | 0.9579316 | 7.320970e-02 |\n", "| Vitória3 | capital | Vitória | 2019 | S019P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Rio de Janeiro7 | capital | Rio de Janeiro | 2019 | S019P | 0.9813696 | 0.9445430 | 1.0181962 | 1.914613e-02 |\n", "| São Paulo6 | capital | São Paulo | 2019 | S019P | 0.9485502 | 0.8937154 | 1.0033849 | 2.949496e-02 |\n", "| Curitiba3 | capital | Curitiba | 2019 | S019P | 0.8922268 | 0.6938503 | 1.0906034 | 1.134402e-01 |\n", "| Florianópolis3 | capital | Florianópolis | 2019 | S019P | 1.0000000 | 1.0000000 | 1.0000000 | 2.862188e-17 |\n", "| Porto Alegre3 | capital | Porto Alegre | 2019 | S019P | 0.9766329 | 0.9303799 | 1.0228859 | 2.416353e-02 |\n", "| Campo Grande3 | capital | Campo Grande | 2019 | S019P | 0.9786548 | 0.9487867 | 1.0085229 | 1.557148e-02 |\n", "| Cuiabá3 | capital | Cuiabá | 2019 | S019P | 0.9146546 | 0.7975341 | 1.0317751 | 6.533226e-02 |\n", "| Goiânia3 | capital | Goiânia | 2019 | S019P | 0.8985256 | 0.7622195 | 1.0348317 | 7.739925e-02 |\n", "| Brasília3 | capital | Brasília | 2019 | S019P | 0.8662223 | 0.7366927 | 0.9957519 | 7.629419e-02 |\n", "| Fundamental incompleto ou equivalente3 | gescol | Fundamental incompleto ou equivalente | 2019 | S019P | 0.7421529 | 0.6860301 | 0.7982757 | 3.858315e-02 |\n", "| Médio incompleto ou equivalente3 | gescol | Médio incompleto ou equivalente | 2019 | S019P | 0.8300336 | 0.7801115 | 0.8799558 | 3.068667e-02 |\n", "| Superior incompleto ou equivalente3 | gescol | Superior incompleto ou equivalente | 2019 | S019P | 0.9019019 | 0.8723502 | 0.9314535 | 1.671761e-02 |\n", "| Superior completo3 | gescol | Superior completo | 2019 | S019P | 0.9757760 | 0.9597872 | 0.9917647 | 8.360210e-03 |\n", "| S016PSim | total | Brasil | 2019 | S016P | 0.8936008 | 0.8767389 | 0.9104627 | 9.627530e-03 |\n", "| S016PSim1 | total | Capital | 2019 | S016P | 0.8709017 | 0.8300706 | 0.9117328 | 2.392071e-02 |\n", "| S017PSim | total | Brasil | 2019 | S017P | 0.8731066 | 0.8539498 | 0.8922634 | 1.119456e-02 |\n", "| S017PSim1 | total | Capital | 2019 | S017P | 0.8488005 | 0.8054984 | 0.8921025 | 2.602884e-02 |\n", "| S018PSim | total | Brasil | 2019 | S018P | 0.8320475 | 0.8093523 | 0.8547428 | 1.391678e-02 |\n", "| S018PSim1 | total | Capital | 2019 | S018P | 0.8717783 | 0.8414178 | 0.9021387 | 1.776864e-02 |\n", "| S019PSim | total | Brasil | 2019 | S019P | 0.8731421 | 0.8528793 | 0.8934049 | 1.184042e-02 |\n", "| S019PSim1 | total | Capital | 2019 | S019P | 0.9094361 | 0.8822897 | 0.9365825 | 1.522971e-02 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_s \n", "25 a 29 anos fx_idade_s \n", "30 a 39 anos fx_idade_s \n", "40 anos ou mais fx_idade_s \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "Fortaleza3 capital \n", "Natal3 capital \n", "João Pessoa3 capital \n", "Recife3 capital \n", "Maceió3 capital \n", "Aracaju3 capital \n", "Salvador3 capital \n", "Belo Horizonte3 capital \n", "Vitória3 capital \n", "Rio de Janeiro7 capital \n", "São Paulo6 capital \n", "Curitiba3 capital \n", "Florianópolis3 capital \n", "Porto Alegre3 capital \n", "Campo Grande3 capital \n", "Cuiabá3 capital \n", "Goiânia3 capital \n", "Brasília3 capital \n", "Fundamental incompleto ou equivalente3 gescol \n", "Médio incompleto ou equivalente3 gescol \n", "Superior incompleto ou equivalente3 gescol \n", "Superior completo3 gescol \n", "S016PSim total \n", "S016PSim1 total \n", "S017PSim total \n", "S017PSim1 total \n", "S018PSim total \n", "S018PSim1 total \n", "S019PSim total \n", "S019PSim1 total \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "Fortaleza3 Fortaleza \n", "Natal3 Natal \n", "João Pessoa3 João Pessoa \n", "Recife3 Recife \n", "Maceió3 Maceió \n", "Aracaju3 Aracaju \n", "Salvador3 Salvador \n", "Belo Horizonte3 Belo Horizonte \n", "Vitória3 Vitória \n", "Rio de Janeiro7 Rio de Janeiro \n", "São Paulo6 São Paulo \n", "Curitiba3 Curitiba \n", "Florianópolis3 Florianópolis \n", "Porto Alegre3 Porto Alegre \n", "Campo Grande3 Campo Grande \n", "Cuiabá3 Cuiabá \n", "Goiânia3 Goiânia \n", "Brasília3 Brasília \n", "Fundamental incompleto ou equivalente3 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente3 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente3 Superior incompleto ou equivalente \n", "Superior completo3 Superior completo \n", "S016PSim Brasil \n", "S016PSim1 Capital \n", "S017PSim Brasil \n", "S017PSim1 Capital \n", "S018PSim Brasil \n", "S018PSim1 Capital \n", "S019PSim Brasil \n", "S019PSim1 Capital \n", " Ano Indicador Sim LowerS \n", "Branca 2019 S016P 0.8747043 0.8394447\n", "Preta 2019 S016P 0.9270440 0.8819540\n", "Parda 2019 S016P 0.8998264 0.8813427\n", "Até 1/2 SM 2019 S016P 0.8811666 0.8556610\n", "1/2 até 1 SM 2019 S016P 0.8986344 0.8672705\n", "1 até 2 SM 2019 S016P 0.9321180 0.8983597\n", "2 até 3 SM 2019 S016P 0.9131325 0.8480609\n", "Mais de 3 SM 2019 S016P 0.8449011 0.7501941\n", "18 a 24 anos 2019 S016P 0.8784567 0.8471783\n", "25 a 29 anos 2019 S016P 0.9121180 0.8854396\n", "30 a 39 anos 2019 S016P 0.8996282 0.8718667\n", "40 anos ou mais 2019 S016P 0.8549542 0.7687697\n", "urbano 2019 S016P 0.9007125 0.8821043\n", "rural 2019 S016P 0.8541637 0.8152466\n", "Rondônia 2019 S016P 0.9657274 0.9374381\n", "Acre 2019 S016P 0.9341028 0.8604602\n", "Amazonas 2019 S016P 0.9073433 0.8454635\n", "Roraima 2019 S016P 0.7734318 0.6039876\n", "Pará 2019 S016P 0.9134246 0.8575382\n", "Amapá 2019 S016P 0.9555542 0.8885170\n", "Tocantins 2019 S016P 0.8106428 0.6778693\n", "Maranhão 2019 S016P 0.8095186 0.7336835\n", "Piauí 2019 S016P 0.9391357 0.8887311\n", "Ceará 2019 S016P 0.8040217 0.7193974\n", "Rio Grande do Norte 2019 S016P 0.9353931 0.8588831\n", "Paraíba 2019 S016P 0.8566499 0.7581708\n", "Pernambuco 2019 S016P 0.8711616 0.8068706\n", "Alagoas 2019 S016P 0.8033046 0.7070219\n", "Sergipe 2019 S016P 0.8516848 0.7504449\n", "Bahia 2019 S016P 0.9096653 0.8455323\n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "Fortaleza3 2019 S019P 0.8528462 0.7005662\n", "Natal3 2019 S019P 0.9574035 0.8956791\n", "João Pessoa3 2019 S019P 0.8469751 0.7248907\n", "Recife3 2019 S019P 0.7957699 0.5943911\n", "Maceió3 2019 S019P 0.9052185 0.8235559\n", "Aracaju3 2019 S019P 0.8719312 0.7256730\n", "Salvador3 2019 S019P 0.9772048 0.9313500\n", "Belo Horizonte3 2019 S019P 0.8377275 0.7175233\n", "Vitória3 2019 S019P 1.0000000 1.0000000\n", "Rio de Janeiro7 2019 S019P 0.9813696 0.9445430\n", "São Paulo6 2019 S019P 0.9485502 0.8937154\n", "Curitiba3 2019 S019P 0.8922268 0.6938503\n", "Florianópolis3 2019 S019P 1.0000000 1.0000000\n", "Porto Alegre3 2019 S019P 0.9766329 0.9303799\n", "Campo Grande3 2019 S019P 0.9786548 0.9487867\n", "Cuiabá3 2019 S019P 0.9146546 0.7975341\n", "Goiânia3 2019 S019P 0.8985256 0.7622195\n", "Brasília3 2019 S019P 0.8662223 0.7366927\n", "Fundamental incompleto ou equivalente3 2019 S019P 0.7421529 0.6860301\n", "Médio incompleto ou equivalente3 2019 S019P 0.8300336 0.7801115\n", "Superior incompleto ou equivalente3 2019 S019P 0.9019019 0.8723502\n", "Superior completo3 2019 S019P 0.9757760 0.9597872\n", "S016PSim 2019 S016P 0.8936008 0.8767389\n", "S016PSim1 2019 S016P 0.8709017 0.8300706\n", "S017PSim 2019 S017P 0.8731066 0.8539498\n", "S017PSim1 2019 S017P 0.8488005 0.8054984\n", "S018PSim 2019 S018P 0.8320475 0.8093523\n", "S018PSim1 2019 S018P 0.8717783 0.8414178\n", "S019PSim 2019 S019P 0.8731421 0.8528793\n", "S019PSim1 2019 S019P 0.9094361 0.8822897\n", " UpperS cvS \n", "Branca 0.9099639 0.02056687 \n", "Preta 0.9721340 0.02481599 \n", "Parda 0.9183100 0.01048046 \n", "Até 1/2 SM 0.9066723 0.01476830 \n", "1/2 até 1 SM 0.9299982 0.01780731 \n", "1 até 2 SM 0.9658762 0.01847824 \n", "2 até 3 SM 0.9782041 0.03635882 \n", "Mais de 3 SM 0.9396081 0.05719106 \n", "18 a 24 anos 0.9097351 0.01816671 \n", "25 a 29 anos 0.9387963 0.01492314 \n", "30 a 39 anos 0.9273898 0.01574462 \n", "40 anos ou mais 0.9411388 0.05143260 \n", "urbano 0.9193208 0.01054074 \n", "rural 0.8930807 0.02324614 \n", "Rondônia 0.9940167 0.01494582 \n", "Acre 1.0077454 0.04022411 \n", "Amazonas 0.9692231 0.03479597 \n", "Roraima 0.9428759 0.11177804 \n", "Pará 0.9693110 0.03121660 \n", "Amapá 1.0225915 0.03579421 \n", "Tocantins 0.9434163 0.08356679 \n", "Maranhão 0.8853537 0.04779642 \n", "Piauí 0.9895403 0.02738380 \n", "Ceará 0.8886460 0.05370064 \n", "Rio Grande do Norte 1.0119032 0.04173267 \n", "Paraíba 0.9551291 0.05865337 \n", "Pernambuco 0.9354526 0.03765332 \n", "Alagoas 0.8995873 0.06115329 \n", "Sergipe 0.9529247 0.06064918 \n", "Bahia 0.9737983 0.03597093 \n", "⋮ ⋮ ⋮ \n", "Fortaleza3 1.0051261 9.110117e-02\n", "Natal3 1.0191278 3.289375e-02\n", "João Pessoa3 0.9690595 7.354301e-02\n", "Recife3 0.9971488 1.291155e-01\n", "Maceió3 0.9868812 4.602799e-02\n", "Aracaju3 1.0181894 8.558347e-02\n", "Salvador3 1.0230596 2.394149e-02\n", "Belo Horizonte3 0.9579316 7.320970e-02\n", "Vitória3 1.0000000 0.000000e+00\n", "Rio de Janeiro7 1.0181962 1.914613e-02\n", "São Paulo6 1.0033849 2.949496e-02\n", "Curitiba3 1.0906034 1.134402e-01\n", "Florianópolis3 1.0000000 2.862188e-17\n", "Porto Alegre3 1.0228859 2.416353e-02\n", "Campo Grande3 1.0085229 1.557148e-02\n", "Cuiabá3 1.0317751 6.533226e-02\n", "Goiânia3 1.0348317 7.739925e-02\n", "Brasília3 0.9957519 7.629419e-02\n", "Fundamental incompleto ou equivalente3 0.7982757 3.858315e-02\n", "Médio incompleto ou equivalente3 0.8799558 3.068667e-02\n", "Superior incompleto ou equivalente3 0.9314535 1.671761e-02\n", "Superior completo3 0.9917647 8.360210e-03\n", "S016PSim 0.9104627 9.627530e-03\n", "S016PSim1 0.9117328 2.392071e-02\n", "S017PSim 0.8922634 1.119456e-02\n", "S017PSim1 0.8921025 2.602884e-02\n", "S018PSim 0.8547428 1.391678e-02\n", "S018PSim1 0.9021387 1.776864e-02\n", "S019PSim 0.8934049 1.184042e-02\n", "S019PSim1 0.9365825 1.522971e-02" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_final" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo S 2019" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 4 }