{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Notebook para criação de tabela de indicadores da PNS - S 2019 Pré-natal - Parte 3"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Bibliotecas Utilizadas"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#Lendo pacotes necessários\n",
"library(survey)\n",
"library(ggplot2)\n",
"library(dplyr)\n",
"library(tictoc)\n",
"library(foreign)\n",
"library(forcats)\n",
"library(tidyverse)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Carregando microdados da PNS"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"
- 293726
- 1087
\n"
],
"text/latex": [
"\\begin{enumerate*}\n",
"\\item 293726\n",
"\\item 1087\n",
"\\end{enumerate*}\n"
],
"text/markdown": [
"1. 293726\n",
"2. 1087\n",
"\n",
"\n"
],
"text/plain": [
"[1] 293726 1087"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Carregando banco de dados para R versão 3.5.0 ou superior\n",
"load(\"\")\n",
"\n",
"#conferindo as dimensões (número de linhas e colunas)\n",
"dim(\"\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Definição do peso e filtragem de respondentes do questionário"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" Min. 1st Qu. Median Mean 3rd Qu. Max. \n",
" 0.00562 0.26621 0.54401 1.00000 1.12765 61.09981 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Selecionando registros válidos e calculando peso amostral - summary de verificação\n",
"pns2019.1<- %>% filter(V0025A==1) \n",
"pns2019.1<-pns2019.1 %>% mutate(peso_morador_selec=((V00291*(90846/168426190))))\n",
"pns2019.1<-pns2019.1 %>% filter(!is.na(peso_morador_selec))\n",
"summary(pns2019.1$peso_morador_selec)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Criação de variáveis dos indicadores"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Sim
- 2131
- Não
- 603
- NA's
- 88112
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Sim] 2131\n",
"\\item[Não] 603\n",
"\\item[NA's] 88112\n",
"\\end{description*}\n"
],
"text/markdown": [
"Sim\n",
": 2131Não\n",
": 603NA's\n",
": 88112\n",
"\n"
],
"text/plain": [
" Sim Não NA's \n",
" 2131 603 88112 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"- Sim
- 2071
- Não
- 663
- NA's
- 88112
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Sim] 2071\n",
"\\item[Não] 663\n",
"\\item[NA's] 88112\n",
"\\end{description*}\n"
],
"text/markdown": [
"Sim\n",
": 2071Não\n",
": 663NA's\n",
": 88112\n",
"\n"
],
"text/plain": [
" Sim Não NA's \n",
" 2071 663 88112 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"- Sim
- 2246
- Não
- 488
- NA's
- 88112
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Sim] 2246\n",
"\\item[Não] 488\n",
"\\item[NA's] 88112\n",
"\\end{description*}\n"
],
"text/markdown": [
"Sim\n",
": 2246Não\n",
": 488NA's\n",
": 88112\n",
"\n"
],
"text/plain": [
" Sim Não NA's \n",
" 2246 488 88112 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"- Sim
- 2172
- Não
- 562
- NA's
- 88112
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Sim] 2172\n",
"\\item[Não] 562\n",
"\\item[NA's] 88112\n",
"\\end{description*}\n"
],
"text/markdown": [
"Sim\n",
": 2172Não\n",
": 562NA's\n",
": 88112\n",
"\n"
],
"text/plain": [
" Sim Não NA's \n",
" 2172 562 88112 "
]
},
"metadata": {},
"output_type": "display_data"
},
{
"data": {
"text/html": [
"- Sim
- 2423
- Não
- 311
- NA's
- 88112
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Sim] 2423\n",
"\\item[Não] 311\n",
"\\item[NA's] 88112\n",
"\\end{description*}\n"
],
"text/markdown": [
"Sim\n",
": 2423Não\n",
": 311NA's\n",
": 88112\n",
"\n"
],
"text/plain": [
" Sim Não NA's \n",
" 2423 311 88112 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Desfechos - Indicadores\n",
"\n",
"# 11. Proporção de mulheres que realizaram teste/exame para sífilis durante o pré-natal - S011P.\n",
"\n",
"pns2019.1$S011P <- NA\n",
"pns2019.1$S011P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n",
"pns2019.1$S011P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S080==1] <- 1\n",
"pns2019.1$S011P<-factor(pns2019.1$S011P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n",
"summary(pns2019.1$S011P)\n",
"\n",
"# 12. Proporção de mulheres que realizaram teste/exame para sífilis durante o pré-natal e receberam o resultado antes do parto - S012P.\n",
"\n",
"pns2019.1$S012P <- NA\n",
"pns2019.1$S012P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n",
"pns2019.1$S012P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S081==1] <- 1\n",
"pns2019.1$S012P<-factor(pns2019.1$S012P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n",
"summary(pns2019.1$S012P)\n",
"\n",
"# 13. Proporção de mulheres que realizaram teste/exame para hepatite B durante o pré-natal - S013P.\n",
"\n",
"pns2019.1$S013P <- NA\n",
"pns2019.1$S013P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n",
"pns2019.1$S013P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S088==1] <- 1\n",
"pns2019.1$S013P<-factor(pns2019.1$S013P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n",
"summary(pns2019.1$S013P)\n",
"\n",
"# 14. Proporção de mulheres que realizaram teste/exame para hepatite B durante o pré-natal e receberam o resultado antes do parto - S014P.\n",
"\n",
"pns2019.1$S014P <- NA\n",
"pns2019.1$S014P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n",
"pns2019.1$S014P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S089==1] <- 1\n",
"pns2019.1$S014P<-factor(pns2019.1$S014P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n",
"summary(pns2019.1$S014P)\n",
"\n",
"# 15. Proporção de mulheres que tiveram solicitação de teste/exame para HIV/AIDS durante o pré-natal - S015P.\n",
"\n",
"pns2019.1$S015P <- NA\n",
"pns2019.1$S015P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n",
"pns2019.1$S015P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S090==1] <- 1\n",
"pns2019.1$S015P<-factor(pns2019.1$S015P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n",
"summary(pns2019.1$S015P)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Definições de abrangências"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Situação urbana ou rural"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- urbano
- 69873
- rural
- 20973
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[urbano] 69873\n",
"\\item[rural] 20973\n",
"\\end{description*}\n"
],
"text/markdown": [
"urbano\n",
": 69873rural\n",
": 20973\n",
"\n"
],
"text/plain": [
"urbano rural \n",
" 69873 20973 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Situação Urbano ou Rural\n",
"pns2019.1 <- pns2019.1 %>% rename(Sit_Urbano_Rural=V0026)\n",
"pns2019.1$Sit_Urbano_Rural<-factor(pns2019.1$Sit_Urbano_Rural, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n",
"summary(pns2019.1$Sit_Urbano_Rural)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### UF"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Rondônia
- 2176
- Acre
- 2380
- Amazonas
- 3479
- Roraima
- 2238
- Pará
- 3853
- Amapá
- 1554
- Tocantins
- 1922
- Maranhão
- 5080
- Piauí
- 2740
- Ceará
- 4265
- Rio Grande do Norte
- 2962
- Paraíba
- 3158
- Pernambuco
- 4083
- Alagoas
- 2987
- Sergipe
- 2610
- Bahia
- 3659
- Minas Gerais
- 5209
- Espírito Santo
- 3541
- Rio de Janeiro
- 4966
- São Paulo
- 6114
- Paraná
- 3967
- Santa Catarina
- 3738
- Rio Grande do Sul
- 3767
- Mato Grosso do Sul
- 2863
- Mato Grosso
- 2468
- Goiás
- 2702
- Distrito Federal
- 2365
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Rondônia] 2176\n",
"\\item[Acre] 2380\n",
"\\item[Amazonas] 3479\n",
"\\item[Roraima] 2238\n",
"\\item[Pará] 3853\n",
"\\item[Amapá] 1554\n",
"\\item[Tocantins] 1922\n",
"\\item[Maranhão] 5080\n",
"\\item[Piauí] 2740\n",
"\\item[Ceará] 4265\n",
"\\item[Rio Grande do Norte] 2962\n",
"\\item[Paraíba] 3158\n",
"\\item[Pernambuco] 4083\n",
"\\item[Alagoas] 2987\n",
"\\item[Sergipe] 2610\n",
"\\item[Bahia] 3659\n",
"\\item[Minas Gerais] 5209\n",
"\\item[Espírito Santo] 3541\n",
"\\item[Rio de Janeiro] 4966\n",
"\\item[São Paulo] 6114\n",
"\\item[Paraná] 3967\n",
"\\item[Santa Catarina] 3738\n",
"\\item[Rio Grande do Sul] 3767\n",
"\\item[Mato Grosso do Sul] 2863\n",
"\\item[Mato Grosso] 2468\n",
"\\item[Goiás] 2702\n",
"\\item[Distrito Federal] 2365\n",
"\\end{description*}\n"
],
"text/markdown": [
"Rondônia\n",
": 2176Acre\n",
": 2380Amazonas\n",
": 3479Roraima\n",
": 2238Pará\n",
": 3853Amapá\n",
": 1554Tocantins\n",
": 1922Maranhão\n",
": 5080Piauí\n",
": 2740Ceará\n",
": 4265Rio Grande do Norte\n",
": 2962Paraíba\n",
": 3158Pernambuco\n",
": 4083Alagoas\n",
": 2987Sergipe\n",
": 2610Bahia\n",
": 3659Minas Gerais\n",
": 5209Espírito Santo\n",
": 3541Rio de Janeiro\n",
": 4966São Paulo\n",
": 6114Paraná\n",
": 3967Santa Catarina\n",
": 3738Rio Grande do Sul\n",
": 3767Mato Grosso do Sul\n",
": 2863Mato Grosso\n",
": 2468Goiás\n",
": 2702Distrito Federal\n",
": 2365\n",
"\n"
],
"text/plain": [
" Rondônia Acre Amazonas Roraima \n",
" 2176 2380 3479 2238 \n",
" Pará Amapá Tocantins Maranhão \n",
" 3853 1554 1922 5080 \n",
" Piauí Ceará Rio Grande do Norte Paraíba \n",
" 2740 4265 2962 3158 \n",
" Pernambuco Alagoas Sergipe Bahia \n",
" 4083 2987 2610 3659 \n",
" Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n",
" 5209 3541 4966 6114 \n",
" Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n",
" 3967 3738 3767 2863 \n",
" Mato Grosso Goiás Distrito Federal \n",
" 2468 2702 2365 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Estados - UFs\n",
"pns2019.1 <- pns2019.1 %>% rename(Unidades_da_Federacao=V0001)\n",
"pns2019.1$Unidades_da_Federacao<-factor(pns2019.1$Unidades_da_Federacao, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n",
" label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n",
" \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n",
" \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n",
" \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n",
" \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n",
"summary(pns2019.1$Unidades_da_Federacao)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Grandes Regiões"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Norte
- 17602
- Nordeste
- 31544
- Sudeste
- 19830
- Sul
- 11472
- Centro-Oeste
- 10398
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Norte] 17602\n",
"\\item[Nordeste] 31544\n",
"\\item[Sudeste] 19830\n",
"\\item[Sul] 11472\n",
"\\item[Centro-Oeste] 10398\n",
"\\end{description*}\n"
],
"text/markdown": [
"Norte\n",
": 17602Nordeste\n",
": 31544Sudeste\n",
": 19830Sul\n",
": 11472Centro-Oeste\n",
": 10398\n",
"\n"
],
"text/plain": [
" Norte Nordeste Sudeste Sul Centro-Oeste \n",
" 17602 31544 19830 11472 10398 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Grandes Regiões\n",
"pns2019.1 <- pns2019.1 %>% \n",
" mutate(GrandesRegioes = fct_collapse(Unidades_da_Federacao, \n",
" `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n",
" `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n",
" `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n",
" `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n",
" `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n",
"summary(pns2019.1$GrandesRegioes)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Capital"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Porto Velho
- 2176
- Rio Branco
- 2380
- Manaus
- 3479
- Boa Vista
- 2238
- Belém
- 3853
- Macapá
- 1554
- Palmas
- 1922
- São Luís
- 5080
- Teresina
- 2740
- Fortaleza
- 4265
- Natal
- 2962
- João Pessoa
- 3158
- Recife
- 4083
- Maceió
- 2987
- Aracaju
- 2610
- Salvador
- 3659
- Belo Horizonte
- 5209
- Vitória
- 3541
- Rio de Janeiro
- 4966
- São Paulo
- 6114
- Curitiba
- 3967
- Florianópolis
- 3738
- Porto Alegre
- 3767
- Campo Grande
- 2863
- Cuiabá
- 2468
- Goiânia
- 2702
- Brasília
- 2365
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Porto Velho] 2176\n",
"\\item[Rio Branco] 2380\n",
"\\item[Manaus] 3479\n",
"\\item[Boa Vista] 2238\n",
"\\item[Belém] 3853\n",
"\\item[Macapá] 1554\n",
"\\item[Palmas] 1922\n",
"\\item[São Luís] 5080\n",
"\\item[Teresina] 2740\n",
"\\item[Fortaleza] 4265\n",
"\\item[Natal] 2962\n",
"\\item[João Pessoa] 3158\n",
"\\item[Recife] 4083\n",
"\\item[Maceió] 2987\n",
"\\item[Aracaju] 2610\n",
"\\item[Salvador] 3659\n",
"\\item[Belo Horizonte] 5209\n",
"\\item[Vitória] 3541\n",
"\\item[Rio de Janeiro] 4966\n",
"\\item[São Paulo] 6114\n",
"\\item[Curitiba] 3967\n",
"\\item[Florianópolis] 3738\n",
"\\item[Porto Alegre] 3767\n",
"\\item[Campo Grande] 2863\n",
"\\item[Cuiabá] 2468\n",
"\\item[Goiânia] 2702\n",
"\\item[Brasília] 2365\n",
"\\end{description*}\n"
],
"text/markdown": [
"Porto Velho\n",
": 2176Rio Branco\n",
": 2380Manaus\n",
": 3479Boa Vista\n",
": 2238Belém\n",
": 3853Macapá\n",
": 1554Palmas\n",
": 1922São Luís\n",
": 5080Teresina\n",
": 2740Fortaleza\n",
": 4265Natal\n",
": 2962João Pessoa\n",
": 3158Recife\n",
": 4083Maceió\n",
": 2987Aracaju\n",
": 2610Salvador\n",
": 3659Belo Horizonte\n",
": 5209Vitória\n",
": 3541Rio de Janeiro\n",
": 4966São Paulo\n",
": 6114Curitiba\n",
": 3967Florianópolis\n",
": 3738Porto Alegre\n",
": 3767Campo Grande\n",
": 2863Cuiabá\n",
": 2468Goiânia\n",
": 2702Brasília\n",
": 2365\n",
"\n"
],
"text/plain": [
" Porto Velho Rio Branco Manaus Boa Vista Belém \n",
" 2176 2380 3479 2238 3853 \n",
" Macapá Palmas São Luís Teresina Fortaleza \n",
" 1554 1922 5080 2740 4265 \n",
" Natal João Pessoa Recife Maceió Aracaju \n",
" 2962 3158 4083 2987 2610 \n",
" Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n",
" 3659 5209 3541 4966 6114 \n",
" Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n",
" 3967 3738 3767 2863 2468 \n",
" Goiânia Brasília \n",
" 2702 2365 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Capital\n",
"pns2019.1<- pns2019.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federacao,\n",
" `Porto Velho`= \"Rondônia\", \n",
" `Boa Vista`= \"Roraima\", \n",
" `Rio Branco`= \"Acre\", \n",
" `Manaus` = \"Amazonas\",\n",
" `Belém` = \"Pará\" ,\n",
" `Macapá`= \"Amapá\",\n",
" `Palmas` = \"Tocantins\",\n",
" `São Luís` = \"Maranhão\",\n",
" `Teresina`= \"Piauí\" ,\n",
" `Fortaleza`= \"Ceará\",\n",
" `Natal`= \"Rio Grande do Norte\",\n",
" `João Pessoa`= \"Paraíba\",\n",
" `Recife`= \"Pernambuco\",\n",
" `Maceió`= \"Alagoas\",\n",
" `Aracaju`= \"Sergipe\",\n",
" `Salvador`= \"Bahia\",\n",
" `Belo Horizonte`= \"Minas Gerais\",\n",
" `Vitória`= \"Espírito Santo\",\n",
" `Rio de Janeiro`= \"Rio de Janeiro\",\n",
" `São Paulo`= \"São Paulo\",\n",
" `Curitiba`= \"Paraná\",\n",
" `Florianópolis`= \"Santa Catarina\",\n",
" `Porto Alegre`= \"Rio Grande do Sul\",\n",
" `Campo Grande`= \"Mato Grosso do Sul\",\n",
" `Cuiabá`= \"Mato Grosso\",\n",
" `Goiânia` = \"Goiás\",\n",
" `Brasília`= \"Distrito Federal\"))\n",
"summary(pns2019.1$Capital)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Faixa Etária"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- 18 a 24 anos
- 8145
- 25 a 29 anos
- 7249
- 30 a 39 anos
- 18150
- 40 anos ou mais
- 54987
- NA's
- 2315
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[18 a 24 anos] 8145\n",
"\\item[25 a 29 anos] 7249\n",
"\\item[30 a 39 anos] 18150\n",
"\\item[40 anos ou mais] 54987\n",
"\\item[NA's] 2315\n",
"\\end{description*}\n"
],
"text/markdown": [
"18 a 24 anos\n",
": 814525 a 29 anos\n",
": 724930 a 39 anos\n",
": 1815040 anos ou mais\n",
": 54987NA's\n",
": 2315\n",
"\n"
],
"text/plain": [
" 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais NA's \n",
" 8145 7249 18150 54987 2315 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Faixas Etárias\n",
"pns2019.1 <- pns2019.1 %>% mutate(fx_idade_S=cut(C008,\n",
" breaks = c(18,25,30,40,120),\n",
" labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n",
" ordered_result = TRUE, right = FALSE))\n",
"summary(pns2019.1$fx_idade_S)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Raça"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Branca
- 33133
- Preta
- 10345
- Parda
- 45994
- NA's
- 1374
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Branca] 33133\n",
"\\item[Preta] 10345\n",
"\\item[Parda] 45994\n",
"\\item[NA's] 1374\n",
"\\end{description*}\n"
],
"text/markdown": [
"Branca\n",
": 33133Preta\n",
": 10345Parda\n",
": 45994NA's\n",
": 1374\n",
"\n"
],
"text/plain": [
"Branca Preta Parda NA's \n",
" 33133 10345 45994 1374 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Raça\n",
"pns2019.1 <- pns2019.1 %>% mutate(Raca= ifelse(C009==1, 1, \n",
" ifelse(C009==2, 2, \n",
" ifelse(C009==4, 3, 9))))\n",
"\n",
"pns2019.1$Raca<-factor(pns2019.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n",
"\n",
"summary(pns2019.1$Raca)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Renda per capita"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Até 1/2 SM
- 23697
- 1/2 até 1 SM
- 26406
- 1 até 2 SM
- 22466
- 2 até 3 SM
- 7612
- Mais de 3 SM
- 10643
- NA's
- 22
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Até 1/2 SM] 23697\n",
"\\item[1/2 até 1 SM] 26406\n",
"\\item[1 até 2 SM] 22466\n",
"\\item[2 até 3 SM] 7612\n",
"\\item[Mais de 3 SM] 10643\n",
"\\item[NA's] 22\n",
"\\end{description*}\n"
],
"text/markdown": [
"Até 1/2 SM\n",
": 236971/2 até 1 SM\n",
": 264061 até 2 SM\n",
": 224662 até 3 SM\n",
": 7612Mais de 3 SM\n",
": 10643NA's\n",
": 22\n",
"\n"
],
"text/plain": [
" Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n",
" 23697 26406 22466 7612 10643 22 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Rendimento domiciliar per capita\n",
"pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n",
" ifelse(VDF004%in% 3, 2, \n",
" ifelse(VDF004%in% 4, 3,\n",
" ifelse(VDF004%in% 5, 4, \n",
" ifelse(is.na(VDF004)==TRUE, NA_real_, 5))))))\n",
"\n",
"pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n",
" \"2 até 3 SM\",\"Mais de 3 SM\"))\n",
"summary(pns2019.1$rend_per_capita)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Escolaridade"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"- Fundamental incompleto ou equivalente
- 36276
- Médio incompleto ou equivalente
- 13520
- Superior incompleto ou equivalente
- 27433
- Superior completo
- 13617
\n"
],
"text/latex": [
"\\begin{description*}\n",
"\\item[Fundamental incompleto ou equivalente] 36276\n",
"\\item[Médio incompleto ou equivalente] 13520\n",
"\\item[Superior incompleto ou equivalente] 27433\n",
"\\item[Superior completo] 13617\n",
"\\end{description*}\n"
],
"text/markdown": [
"Fundamental incompleto ou equivalente\n",
": 36276Médio incompleto ou equivalente\n",
": 13520Superior incompleto ou equivalente\n",
": 27433Superior completo\n",
": 13617\n",
"\n"
],
"text/plain": [
"Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n",
" 36276 13520 \n",
" Superior incompleto ou equivalente Superior completo \n",
" 27433 13617 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Escolaridade\n",
"pns2019.1 <- pns2019.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n",
" ifelse(VDD004A%in% 3:4, 2, \n",
" ifelse(VDD004A%in% 5:6, 3,4\n",
" ))))\n",
"\n",
"pns2019.1$gescol<-factor(pns2019.1$gescol, levels=c(1,2,3,4), \n",
" labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n",
" \"Superior incompleto ou equivalente\",\"Superior completo\"))\n",
"summary(pns2019.1$gescol)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Criando indicadores"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Filtrando base de indicadores"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
" V0024 UPA_PNS peso_morador_selec C008 \n",
" 1210010: 1167 140001681: 18 Min. : 0.00562 Min. : 15.00 \n",
" 1410011: 792 140003815: 18 1st Qu.: 0.26621 1st Qu.: 32.00 \n",
" 2710111: 779 140005777: 18 Median : 0.54401 Median : 45.00 \n",
" 2410011: 745 140006746: 18 Mean : 1.00000 Mean : 46.39 \n",
" 5010011: 738 140007081: 18 3rd Qu.: 1.12765 3rd Qu.: 60.00 \n",
" 3210011: 711 140007715: 18 Max. :61.09981 Max. :107.00 \n",
" (Other):85914 (Other) :90738 \n",
" C006 C009 V0031 Sit_Urbano_Rural\n",
" Min. :1.000 Min. :1.000 Min. :1.000 urbano:69873 \n",
" 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 rural :20973 \n",
" Median :2.000 Median :4.000 Median :2.000 \n",
" Mean :1.529 Mean :2.679 Mean :2.605 \n",
" 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:4.000 \n",
" Max. :2.000 Max. :9.000 Max. :4.000 \n",
" \n",
" Unidades_da_Federacao GrandesRegioes Capital \n",
" São Paulo : 6114 Norte :17602 São Paulo : 6114 \n",
" Minas Gerais : 5209 Nordeste :31544 Belo Horizonte: 5209 \n",
" Maranhão : 5080 Sudeste :19830 São Luís : 5080 \n",
" Rio de Janeiro: 4966 Sul :11472 Rio de Janeiro: 4966 \n",
" Ceará : 4265 Centro-Oeste:10398 Fortaleza : 4265 \n",
" Pernambuco : 4083 Recife : 4083 \n",
" (Other) :61129 (Other) :61129 \n",
" fx_idade_S Raca rend_per_capita \n",
" 18 a 24 anos : 8145 Branca:33133 Até 1/2 SM :23697 \n",
" 25 a 29 anos : 7249 Preta :10345 1/2 até 1 SM:26406 \n",
" 30 a 39 anos :18150 Parda :45994 1 até 2 SM :22466 \n",
" 40 anos ou mais:54987 NA's : 1374 2 até 3 SM : 7612 \n",
" NA's : 2315 Mais de 3 SM:10643 \n",
" NA's : 22 \n",
" \n",
" gescol S011P S012P \n",
" Fundamental incompleto ou equivalente:36276 Sim : 2131 Sim : 2071 \n",
" Médio incompleto ou equivalente :13520 Não : 603 Não : 663 \n",
" Superior incompleto ou equivalente :27433 NA's:88112 NA's:88112 \n",
" Superior completo :13617 \n",
" \n",
" \n",
" \n",
" S013P S014P S015P S068 \n",
" Sim : 2246 Sim : 2172 Sim : 2423 Min. :1.00 \n",
" Não : 488 Não : 562 Não : 311 1st Qu.:1.00 \n",
" NA's:88112 NA's:88112 NA's:88112 Median :1.00 \n",
" Mean :1.03 \n",
" 3rd Qu.:1.00 \n",
" Max. :2.00 \n",
" NA's :87936 "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"#Selecionando variáveis para cálculo de indicadores no survey\n",
"pns2019Ssurvey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"C008\", \"C006\", \"C009\", \"V0031\", \n",
" \"Sit_Urbano_Rural\", \"Unidades_da_Federacao\", \"GrandesRegioes\", \"Capital\", \"fx_idade_S\", \"Raca\", \"rend_per_capita\", \"gescol\",\n",
" \"S011P\", \"S012P\", \"S013P\", \"S014P\", \"S015P\", \"S068\") \n",
"summary(pns2019Ssurvey)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Exporta tabela filtrada com os dados específicos - Módulo S - Parte3 2019"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"#Salvando csv para cálculo de indicadores no survey\n",
"diretorio_saida <- \"\"\n",
"write.csv(pns2019Ssurvey, file.path(diretorio_saida, \"pns2019Ssurvey.csv\"))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Cria plano amostral complexo"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"desPNS=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_morador_selec, nest=TRUE, \n",
" data=pns2019Ssurvey)"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"#survey design S006P a S010P\n",
"desPNSS=subset(desPNS, C006==2 & C008>=18 & S068==1)\n",
"desPNSS_C=subset(desPNS, C006==2 & C008>=18 & S068==1 & V0031==1)\n",
"desPNSS_R=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(Raca))\n",
"desPNSS_Rend=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(rend_per_capita))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Criação da tabela de indicadores\n",
"Essa tabela é responsável por unir os indicadores no formato do painel de indicadores"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [],
"source": [
"matrizIndicadores = data.frame()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Definição de variáveis para iteração dos indicadores"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [],
"source": [
"ListaIndicadores = c(~S011P, ~S012P, ~S013P, ~S014P, ~S015P)\n",
"ListaIndicadoresTexto = c(\"S011P\", \"S012P\", \"S013P\", \"S014P\", \"S015P\" )\n",
"ListaTotais = c('Brasil','Capital')\n",
"Ano <- \"2019\""
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [],
"source": [
"ListaDominios = c(~Raca,~rend_per_capita,~fx_idade_S,~Sit_Urbano_Rural,\n",
" ~Unidades_da_Federacao,~GrandesRegioes,~Capital,~gescol)\n",
"ListaDominiosTexto= c(\"raça\",\"rend_per_capita\",\"fx_idade_S\",\"urb_rur\",\n",
" \"uf\",\"região\",\"capital\",\"gescol\") "
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preenchendo a tabela de indicadores\n",
"Essas iterações rodam por indicador, abrangência e por design"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [],
"source": [
"#Cálculo dos indicadores usando o pacote survey \n",
"i <- 0\n",
"#Para cada indicador\n",
"for( indicador in ListaIndicadores){\n",
" i <- i + 1; j <- 1\n",
" #Para cada dominio\n",
" for (dominio in ListaDominios){\n",
" #design especifico para capital que é subconjunto do dataframe total\n",
" #design geral para capital \n",
" if (ListaDominiosTexto[j]==\"capital\"){\n",
" dataframe_indicador<-svyby( indicador , dominio , desPNSS_C , svymean,vartype= c(\"ci\",\"cv\"))\n",
" #design geral para raça\n",
" } else if (ListaDominiosTexto[j]==\"raça\"){\n",
" dataframe_indicador<-svyby( indicador , dominio , desPNSS_R , svymean,vartype= c(\"ci\",\"cv\")) \n",
" #design geral para renda per capita\n",
" } else if (ListaDominiosTexto[j]==\"rend_per_capita\"){\n",
" dataframe_indicador<-svyby( indicador , dominio , desPNSS_Rend , svymean,vartype= c(\"ci\",\"cv\")) \n",
" #design geral para o subconjunto maior que 18 anos \n",
" } else { \n",
" dataframe_indicador<-svyby( indicador , dominio , desPNSS , svymean,vartype= c(\"ci\",\"cv\")) \n",
" }\n",
" #União do dataframe de indicadores no formato do painel disponibilizado para PNS\n",
" dataframe_indicador<-data.frame(dataframe_indicador)\n",
" colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Nao\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n",
" dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n",
" dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n",
" dataframe_indicador$Ano <- Ano\n",
" dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n",
" matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n",
" j <- j + 1\n",
" }\n",
"}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Criando a tabela pela abrangência total"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"matriz_totais <- data.frame()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Preenchendo a tabela com as abrangencia Brasil e total das capitais"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"i = 0\n",
"# para cada indicador\n",
"for(indicador in ListaIndicadores){\n",
" i <- i + 1\n",
" # para os totais Brasil e total das capitais\n",
" for(total in ListaTotais){\n",
" dataframe_indicador <- data.frame()\n",
" dataframe_indicador_S <- data.frame()\n",
" # Uso do design que é subconjunto do dataset para cada Capital\n",
" if (total == \"Capital\"){\n",
" #Indicadores que são subconjunto do dataset total\n",
" dataframe_indicador <- svymean(indicador,desPNSS_C)\n",
" } else {\n",
" dataframe_indicador <- svymean(indicador,desPNSS)\n",
" }\n",
" intervalo_confianca <- confint(dataframe_indicador)\n",
" coeficiente_variacao <- cv(dataframe_indicador)\n",
" dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n",
" dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n",
" \n",
" dataframe_indicador <- dataframe_indicador %>% \n",
" select('mean','X2.5..','X97.5..',coeficiente_variacao) \n",
" dataframe_indicador_S <- dataframe_indicador %>% \n",
" slice(1)\n",
" \n",
" colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n",
" dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n",
" \n",
" dataframe_indicador_S$abr_tipo <- \"total\"\n",
" dataframe_indicador_S$abr_nome <- total\n",
" dataframe_indicador_S$Ano <- Ano\n",
" #Uso design do subconjunto para raça/cor que inclui preta,branca e parda \n",
" # as outras raças não possuiam dados suficientes para os dominios dos indicadores\n",
" \n",
" dataframe_indicador_S <- dataframe_indicador_S %>% \n",
" select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n",
" \n",
" matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n",
" }\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 10 × 8\n",
"\n",
"\t | abr_tipo | abr_nome | Ano | Indicador | Sim | LowerS | UpperS | cvS |
\n",
"\t | <chr> | <chr> | <chr> | <chr> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\tS011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |
\n",
"\tS011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |
\n",
"\tS012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |
\n",
"\tS012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |
\n",
"\tS013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |
\n",
"\tS013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |
\n",
"\tS014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |
\n",
"\tS014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |
\n",
"\tS015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |
\n",
"\tS015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 10 × 8\n",
"\\begin{tabular}{r|llllllll}\n",
" & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n",
" & & & & & & & & \\\\\n",
"\\hline\n",
"\tS011PSim & total & Brasil & 2019 & S011P & 0.7970506 & 0.7729093 & 0.8211920 & 0.015453529\\\\\n",
"\tS011PSim1 & total & Capital & 2019 & S011P & 0.7856012 & 0.7367190 & 0.8344834 & 0.031746843\\\\\n",
"\tS012PSim & total & Brasil & 2019 & S012P & 0.7709437 & 0.7450416 & 0.7968458 & 0.017142104\\\\\n",
"\tS012PSim1 & total & Capital & 2019 & S012P & 0.7605274 & 0.7105432 & 0.8105116 & 0.033532798\\\\\n",
"\tS013PSim & total & Brasil & 2019 & S013P & 0.8423751 & 0.8206783 & 0.8640719 & 0.013141415\\\\\n",
"\tS013PSim1 & total & Capital & 2019 & S013P & 0.8497500 & 0.8098841 & 0.8896158 & 0.023936576\\\\\n",
"\tS014PSim & total & Brasil & 2019 & S014P & 0.8117146 & 0.7881055 & 0.8353238 & 0.014839855\\\\\n",
"\tS014PSim1 & total & Capital & 2019 & S014P & 0.8189464 & 0.7762082 & 0.8616846 & 0.026626396\\\\\n",
"\tS015PSim & total & Brasil & 2019 & S015P & 0.8997072 & 0.8831155 & 0.9162988 & 0.009408937\\\\\n",
"\tS015PSim1 & total & Capital & 2019 & S015P & 0.8832092 & 0.8432095 & 0.9232089 & 0.023107083\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 10 × 8\n",
"\n",
"| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|\n",
"| S011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |\n",
"| S011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |\n",
"| S012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |\n",
"| S012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |\n",
"| S013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |\n",
"| S013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |\n",
"| S014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |\n",
"| S014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |\n",
"| S015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |\n",
"| S015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |\n",
"\n"
],
"text/plain": [
" abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n",
"S011PSim total Brasil 2019 S011P 0.7970506 0.7729093 0.8211920\n",
"S011PSim1 total Capital 2019 S011P 0.7856012 0.7367190 0.8344834\n",
"S012PSim total Brasil 2019 S012P 0.7709437 0.7450416 0.7968458\n",
"S012PSim1 total Capital 2019 S012P 0.7605274 0.7105432 0.8105116\n",
"S013PSim total Brasil 2019 S013P 0.8423751 0.8206783 0.8640719\n",
"S013PSim1 total Capital 2019 S013P 0.8497500 0.8098841 0.8896158\n",
"S014PSim total Brasil 2019 S014P 0.8117146 0.7881055 0.8353238\n",
"S014PSim1 total Capital 2019 S014P 0.8189464 0.7762082 0.8616846\n",
"S015PSim total Brasil 2019 S015P 0.8997072 0.8831155 0.9162988\n",
"S015PSim1 total Capital 2019 S015P 0.8832092 0.8432095 0.9232089\n",
" cvS \n",
"S011PSim 0.015453529\n",
"S011PSim1 0.031746843\n",
"S012PSim 0.017142104\n",
"S012PSim1 0.033532798\n",
"S013PSim 0.013141415\n",
"S013PSim1 0.023936576\n",
"S014PSim 0.014839855\n",
"S014PSim1 0.026626396\n",
"S015PSim 0.009408937\n",
"S015PSim1 0.023107083"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"matriz_totais"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Unindo tabela de indicadores e de totais"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [],
"source": [
"matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Visualizando tabela de indicadores"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"A data.frame: 395 × 8\n",
"\n",
"\t | abr_tipo | abr_nome | Ano | Indicador | Sim | LowerS | UpperS | cvS |
\n",
"\t | <chr> | <fct> | <chr> | <chr> | <dbl> | <dbl> | <dbl> | <dbl> |
\n",
"\n",
"\n",
"\tBranca | raça | Branca | 2019 | S011P | 0.7873750 | 0.7422421 | 0.8325079 | 0.02924581 |
\n",
"\tPreta | raça | Preta | 2019 | S011P | 0.7794471 | 0.7046830 | 0.8542112 | 0.04893935 |
\n",
"\tParda | raça | Parda | 2019 | S011P | 0.8112202 | 0.7821922 | 0.8402482 | 0.01825704 |
\n",
"\tAté 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S011P | 0.7674890 | 0.7344969 | 0.8004810 | 0.02193252 |
\n",
"\t1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S011P | 0.8227927 | 0.7772524 | 0.8683330 | 0.02823954 |
\n",
"\t1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S011P | 0.8572637 | 0.7962834 | 0.9182440 | 0.03629337 |
\n",
"\t2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S011P | 0.7506448 | 0.6173035 | 0.8839861 | 0.09063210 |
\n",
"\tMais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S011P | 0.7643860 | 0.6571495 | 0.8716225 | 0.07157838 |
\n",
"\t18 a 24 anos | fx_idade_S | 18 a 24 anos | 2019 | S011P | 0.7642557 | 0.7172469 | 0.8112645 | 0.03138288 |
\n",
"\t25 a 29 anos | fx_idade_S | 25 a 29 anos | 2019 | S011P | 0.7897381 | 0.7367238 | 0.8427525 | 0.03425013 |
\n",
"\t30 a 39 anos | fx_idade_S | 30 a 39 anos | 2019 | S011P | 0.8265024 | 0.7909434 | 0.8620615 | 0.02195119 |
\n",
"\t40 anos ou mais | fx_idade_S | 40 anos ou mais | 2019 | S011P | 0.7832286 | 0.6845172 | 0.8819400 | 0.06430293 |
\n",
"\turbano | urb_rur | urbano | 2019 | S011P | 0.8123256 | 0.7851979 | 0.8394532 | 0.01703859 |
\n",
"\trural | urb_rur | rural | 2019 | S011P | 0.7123457 | 0.6653805 | 0.7593109 | 0.03363856 |
\n",
"\tRondônia | uf | Rondônia | 2019 | S011P | 0.8113854 | 0.7112533 | 0.9115175 | 0.06296482 |
\n",
"\tAcre | uf | Acre | 2019 | S011P | 0.8715134 | 0.7777214 | 0.9653054 | 0.05490903 |
\n",
"\tAmazonas | uf | Amazonas | 2019 | S011P | 0.7675780 | 0.6671789 | 0.8679770 | 0.06673581 |
\n",
"\tRoraima | uf | Roraima | 2019 | S011P | 0.8092680 | 0.6458560 | 0.9726801 | 0.10302523 |
\n",
"\tPará | uf | Pará | 2019 | S011P | 0.7977664 | 0.7155590 | 0.8799738 | 0.05257592 |
\n",
"\tAmapá | uf | Amapá | 2019 | S011P | 0.8772571 | 0.7620805 | 0.9924338 | 0.06698682 |
\n",
"\tTocantins | uf | Tocantins | 2019 | S011P | 0.8597343 | 0.7646931 | 0.9547755 | 0.05640264 |
\n",
"\tMaranhão | uf | Maranhão | 2019 | S011P | 0.6763398 | 0.5883963 | 0.7642833 | 0.06634235 |
\n",
"\tPiauí | uf | Piauí | 2019 | S011P | 0.7918508 | 0.6875284 | 0.8961731 | 0.06721805 |
\n",
"\tCeará | uf | Ceará | 2019 | S011P | 0.7318008 | 0.6417493 | 0.8218522 | 0.06278410 |
\n",
"\tRio Grande do Norte | uf | Rio Grande do Norte | 2019 | S011P | 0.8062034 | 0.7020560 | 0.9103508 | 0.06591067 |
\n",
"\tParaíba | uf | Paraíba | 2019 | S011P | 0.6354086 | 0.5038523 | 0.7669648 | 0.10563561 |
\n",
"\tPernambuco | uf | Pernambuco | 2019 | S011P | 0.7903354 | 0.7019489 | 0.8787220 | 0.05705934 |
\n",
"\tAlagoas | uf | Alagoas | 2019 | S011P | 0.7448166 | 0.6421750 | 0.8474582 | 0.07031143 |
\n",
"\tSergipe | uf | Sergipe | 2019 | S011P | 0.7055517 | 0.5524472 | 0.8586563 | 0.11071620 |
\n",
"\tBahia | uf | Bahia | 2019 | S011P | 0.8109277 | 0.6995516 | 0.9223039 | 0.07007479 |
\n",
"\t⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |
\n",
"\tJoão Pessoa4 | capital | João Pessoa | 2019 | S015P | 0.9058899 | 0.8197244 | 0.9920555 | 0.048529968 |
\n",
"\tRecife4 | capital | Recife | 2019 | S015P | 0.9442654 | 0.8641629 | 1.0243678 | 0.043281640 |
\n",
"\tMaceió4 | capital | Maceió | 2019 | S015P | 0.9317416 | 0.8584334 | 1.0050497 | 0.040142881 |
\n",
"\tAracaju4 | capital | Aracaju | 2019 | S015P | 0.9253580 | 0.8200606 | 1.0306555 | 0.058057736 |
\n",
"\tSalvador4 | capital | Salvador | 2019 | S015P | 0.8851483 | 0.7279619 | 1.0423347 | 0.090604712 |
\n",
"\tBelo Horizonte4 | capital | Belo Horizonte | 2019 | S015P | 0.7831622 | 0.6265665 | 0.9397578 | 0.102018733 |
\n",
"\tVitória4 | capital | Vitória | 2019 | S015P | 0.8295784 | 0.6389091 | 1.0202477 | 0.117266844 |
\n",
"\tRio de Janeiro9 | capital | Rio de Janeiro | 2019 | S015P | 0.9830347 | 0.9513834 | 1.0146860 | 0.016427602 |
\n",
"\tSão Paulo8 | capital | São Paulo | 2019 | S015P | 0.7818142 | 0.6130362 | 0.9505922 | 0.110144846 |
\n",
"\tCuritiba4 | capital | Curitiba | 2019 | S015P | 0.8708550 | 0.7478725 | 0.9938376 | 0.072052572 |
\n",
"\tFlorianópolis4 | capital | Florianópolis | 2019 | S015P | 0.7691331 | 0.5210958 | 1.0171704 | 0.164538473 |
\n",
"\tPorto Alegre4 | capital | Porto Alegre | 2019 | S015P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000000 |
\n",
"\tCampo Grande4 | capital | Campo Grande | 2019 | S015P | 0.9588850 | 0.9041423 | 1.0136277 | 0.029128061 |
\n",
"\tCuiabá4 | capital | Cuiabá | 2019 | S015P | 0.8613471 | 0.6884873 | 1.0342069 | 0.102392414 |
\n",
"\tGoiânia4 | capital | Goiânia | 2019 | S015P | 0.9112432 | 0.7458644 | 1.0766219 | 0.092597080 |
\n",
"\tBrasília4 | capital | Brasília | 2019 | S015P | 0.8353633 | 0.7275334 | 0.9431932 | 0.065859086 |
\n",
"\tFundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2019 | S015P | 0.8420161 | 0.7906370 | 0.8933952 | 0.031132788 |
\n",
"\tMédio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2019 | S015P | 0.8999967 | 0.8673529 | 0.9326406 | 0.018505991 |
\n",
"\tSuperior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2019 | S015P | 0.9163796 | 0.8947965 | 0.9379628 | 0.012016843 |
\n",
"\tSuperior completo4 | gescol | Superior completo | 2019 | S015P | 0.9154731 | 0.8764884 | 0.9544578 | 0.021727051 |
\n",
"\tS011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |
\n",
"\tS011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |
\n",
"\tS012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |
\n",
"\tS012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |
\n",
"\tS013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |
\n",
"\tS013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |
\n",
"\tS014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |
\n",
"\tS014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |
\n",
"\tS015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |
\n",
"\tS015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |
\n",
"\n",
"
\n"
],
"text/latex": [
"A data.frame: 395 × 8\n",
"\\begin{tabular}{r|llllllll}\n",
" & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n",
" & & & & & & & & \\\\\n",
"\\hline\n",
"\tBranca & raça & Branca & 2019 & S011P & 0.7873750 & 0.7422421 & 0.8325079 & 0.02924581\\\\\n",
"\tPreta & raça & Preta & 2019 & S011P & 0.7794471 & 0.7046830 & 0.8542112 & 0.04893935\\\\\n",
"\tParda & raça & Parda & 2019 & S011P & 0.8112202 & 0.7821922 & 0.8402482 & 0.01825704\\\\\n",
"\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S011P & 0.7674890 & 0.7344969 & 0.8004810 & 0.02193252\\\\\n",
"\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S011P & 0.8227927 & 0.7772524 & 0.8683330 & 0.02823954\\\\\n",
"\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S011P & 0.8572637 & 0.7962834 & 0.9182440 & 0.03629337\\\\\n",
"\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S011P & 0.7506448 & 0.6173035 & 0.8839861 & 0.09063210\\\\\n",
"\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S011P & 0.7643860 & 0.6571495 & 0.8716225 & 0.07157838\\\\\n",
"\t18 a 24 anos & fx\\_idade\\_S & 18 a 24 anos & 2019 & S011P & 0.7642557 & 0.7172469 & 0.8112645 & 0.03138288\\\\\n",
"\t25 a 29 anos & fx\\_idade\\_S & 25 a 29 anos & 2019 & S011P & 0.7897381 & 0.7367238 & 0.8427525 & 0.03425013\\\\\n",
"\t30 a 39 anos & fx\\_idade\\_S & 30 a 39 anos & 2019 & S011P & 0.8265024 & 0.7909434 & 0.8620615 & 0.02195119\\\\\n",
"\t40 anos ou mais & fx\\_idade\\_S & 40 anos ou mais & 2019 & S011P & 0.7832286 & 0.6845172 & 0.8819400 & 0.06430293\\\\\n",
"\turbano & urb\\_rur & urbano & 2019 & S011P & 0.8123256 & 0.7851979 & 0.8394532 & 0.01703859\\\\\n",
"\trural & urb\\_rur & rural & 2019 & S011P & 0.7123457 & 0.6653805 & 0.7593109 & 0.03363856\\\\\n",
"\tRondônia & uf & Rondônia & 2019 & S011P & 0.8113854 & 0.7112533 & 0.9115175 & 0.06296482\\\\\n",
"\tAcre & uf & Acre & 2019 & S011P & 0.8715134 & 0.7777214 & 0.9653054 & 0.05490903\\\\\n",
"\tAmazonas & uf & Amazonas & 2019 & S011P & 0.7675780 & 0.6671789 & 0.8679770 & 0.06673581\\\\\n",
"\tRoraima & uf & Roraima & 2019 & S011P & 0.8092680 & 0.6458560 & 0.9726801 & 0.10302523\\\\\n",
"\tPará & uf & Pará & 2019 & S011P & 0.7977664 & 0.7155590 & 0.8799738 & 0.05257592\\\\\n",
"\tAmapá & uf & Amapá & 2019 & S011P & 0.8772571 & 0.7620805 & 0.9924338 & 0.06698682\\\\\n",
"\tTocantins & uf & Tocantins & 2019 & S011P & 0.8597343 & 0.7646931 & 0.9547755 & 0.05640264\\\\\n",
"\tMaranhão & uf & Maranhão & 2019 & S011P & 0.6763398 & 0.5883963 & 0.7642833 & 0.06634235\\\\\n",
"\tPiauí & uf & Piauí & 2019 & S011P & 0.7918508 & 0.6875284 & 0.8961731 & 0.06721805\\\\\n",
"\tCeará & uf & Ceará & 2019 & S011P & 0.7318008 & 0.6417493 & 0.8218522 & 0.06278410\\\\\n",
"\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S011P & 0.8062034 & 0.7020560 & 0.9103508 & 0.06591067\\\\\n",
"\tParaíba & uf & Paraíba & 2019 & S011P & 0.6354086 & 0.5038523 & 0.7669648 & 0.10563561\\\\\n",
"\tPernambuco & uf & Pernambuco & 2019 & S011P & 0.7903354 & 0.7019489 & 0.8787220 & 0.05705934\\\\\n",
"\tAlagoas & uf & Alagoas & 2019 & S011P & 0.7448166 & 0.6421750 & 0.8474582 & 0.07031143\\\\\n",
"\tSergipe & uf & Sergipe & 2019 & S011P & 0.7055517 & 0.5524472 & 0.8586563 & 0.11071620\\\\\n",
"\tBahia & uf & Bahia & 2019 & S011P & 0.8109277 & 0.6995516 & 0.9223039 & 0.07007479\\\\\n",
"\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n",
"\tJoão Pessoa4 & capital & João Pessoa & 2019 & S015P & 0.9058899 & 0.8197244 & 0.9920555 & 0.048529968\\\\\n",
"\tRecife4 & capital & Recife & 2019 & S015P & 0.9442654 & 0.8641629 & 1.0243678 & 0.043281640\\\\\n",
"\tMaceió4 & capital & Maceió & 2019 & S015P & 0.9317416 & 0.8584334 & 1.0050497 & 0.040142881\\\\\n",
"\tAracaju4 & capital & Aracaju & 2019 & S015P & 0.9253580 & 0.8200606 & 1.0306555 & 0.058057736\\\\\n",
"\tSalvador4 & capital & Salvador & 2019 & S015P & 0.8851483 & 0.7279619 & 1.0423347 & 0.090604712\\\\\n",
"\tBelo Horizonte4 & capital & Belo Horizonte & 2019 & S015P & 0.7831622 & 0.6265665 & 0.9397578 & 0.102018733\\\\\n",
"\tVitória4 & capital & Vitória & 2019 & S015P & 0.8295784 & 0.6389091 & 1.0202477 & 0.117266844\\\\\n",
"\tRio de Janeiro9 & capital & Rio de Janeiro & 2019 & S015P & 0.9830347 & 0.9513834 & 1.0146860 & 0.016427602\\\\\n",
"\tSão Paulo8 & capital & São Paulo & 2019 & S015P & 0.7818142 & 0.6130362 & 0.9505922 & 0.110144846\\\\\n",
"\tCuritiba4 & capital & Curitiba & 2019 & S015P & 0.8708550 & 0.7478725 & 0.9938376 & 0.072052572\\\\\n",
"\tFlorianópolis4 & capital & Florianópolis & 2019 & S015P & 0.7691331 & 0.5210958 & 1.0171704 & 0.164538473\\\\\n",
"\tPorto Alegre4 & capital & Porto Alegre & 2019 & S015P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000000\\\\\n",
"\tCampo Grande4 & capital & Campo Grande & 2019 & S015P & 0.9588850 & 0.9041423 & 1.0136277 & 0.029128061\\\\\n",
"\tCuiabá4 & capital & Cuiabá & 2019 & S015P & 0.8613471 & 0.6884873 & 1.0342069 & 0.102392414\\\\\n",
"\tGoiânia4 & capital & Goiânia & 2019 & S015P & 0.9112432 & 0.7458644 & 1.0766219 & 0.092597080\\\\\n",
"\tBrasília4 & capital & Brasília & 2019 & S015P & 0.8353633 & 0.7275334 & 0.9431932 & 0.065859086\\\\\n",
"\tFundamental incompleto ou equivalente4 & gescol & Fundamental incompleto ou equivalente & 2019 & S015P & 0.8420161 & 0.7906370 & 0.8933952 & 0.031132788\\\\\n",
"\tMédio incompleto ou equivalente4 & gescol & Médio incompleto ou equivalente & 2019 & S015P & 0.8999967 & 0.8673529 & 0.9326406 & 0.018505991\\\\\n",
"\tSuperior incompleto ou equivalente4 & gescol & Superior incompleto ou equivalente & 2019 & S015P & 0.9163796 & 0.8947965 & 0.9379628 & 0.012016843\\\\\n",
"\tSuperior completo4 & gescol & Superior completo & 2019 & S015P & 0.9154731 & 0.8764884 & 0.9544578 & 0.021727051\\\\\n",
"\tS011PSim & total & Brasil & 2019 & S011P & 0.7970506 & 0.7729093 & 0.8211920 & 0.015453529\\\\\n",
"\tS011PSim1 & total & Capital & 2019 & S011P & 0.7856012 & 0.7367190 & 0.8344834 & 0.031746843\\\\\n",
"\tS012PSim & total & Brasil & 2019 & S012P & 0.7709437 & 0.7450416 & 0.7968458 & 0.017142104\\\\\n",
"\tS012PSim1 & total & Capital & 2019 & S012P & 0.7605274 & 0.7105432 & 0.8105116 & 0.033532798\\\\\n",
"\tS013PSim & total & Brasil & 2019 & S013P & 0.8423751 & 0.8206783 & 0.8640719 & 0.013141415\\\\\n",
"\tS013PSim1 & total & Capital & 2019 & S013P & 0.8497500 & 0.8098841 & 0.8896158 & 0.023936576\\\\\n",
"\tS014PSim & total & Brasil & 2019 & S014P & 0.8117146 & 0.7881055 & 0.8353238 & 0.014839855\\\\\n",
"\tS014PSim1 & total & Capital & 2019 & S014P & 0.8189464 & 0.7762082 & 0.8616846 & 0.026626396\\\\\n",
"\tS015PSim & total & Brasil & 2019 & S015P & 0.8997072 & 0.8831155 & 0.9162988 & 0.009408937\\\\\n",
"\tS015PSim1 & total & Capital & 2019 & S015P & 0.8832092 & 0.8432095 & 0.9232089 & 0.023107083\\\\\n",
"\\end{tabular}\n"
],
"text/markdown": [
"\n",
"A data.frame: 395 × 8\n",
"\n",
"| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n",
"|---|---|---|---|---|---|---|---|---|\n",
"| Branca | raça | Branca | 2019 | S011P | 0.7873750 | 0.7422421 | 0.8325079 | 0.02924581 |\n",
"| Preta | raça | Preta | 2019 | S011P | 0.7794471 | 0.7046830 | 0.8542112 | 0.04893935 |\n",
"| Parda | raça | Parda | 2019 | S011P | 0.8112202 | 0.7821922 | 0.8402482 | 0.01825704 |\n",
"| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S011P | 0.7674890 | 0.7344969 | 0.8004810 | 0.02193252 |\n",
"| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S011P | 0.8227927 | 0.7772524 | 0.8683330 | 0.02823954 |\n",
"| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S011P | 0.8572637 | 0.7962834 | 0.9182440 | 0.03629337 |\n",
"| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S011P | 0.7506448 | 0.6173035 | 0.8839861 | 0.09063210 |\n",
"| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S011P | 0.7643860 | 0.6571495 | 0.8716225 | 0.07157838 |\n",
"| 18 a 24 anos | fx_idade_S | 18 a 24 anos | 2019 | S011P | 0.7642557 | 0.7172469 | 0.8112645 | 0.03138288 |\n",
"| 25 a 29 anos | fx_idade_S | 25 a 29 anos | 2019 | S011P | 0.7897381 | 0.7367238 | 0.8427525 | 0.03425013 |\n",
"| 30 a 39 anos | fx_idade_S | 30 a 39 anos | 2019 | S011P | 0.8265024 | 0.7909434 | 0.8620615 | 0.02195119 |\n",
"| 40 anos ou mais | fx_idade_S | 40 anos ou mais | 2019 | S011P | 0.7832286 | 0.6845172 | 0.8819400 | 0.06430293 |\n",
"| urbano | urb_rur | urbano | 2019 | S011P | 0.8123256 | 0.7851979 | 0.8394532 | 0.01703859 |\n",
"| rural | urb_rur | rural | 2019 | S011P | 0.7123457 | 0.6653805 | 0.7593109 | 0.03363856 |\n",
"| Rondônia | uf | Rondônia | 2019 | S011P | 0.8113854 | 0.7112533 | 0.9115175 | 0.06296482 |\n",
"| Acre | uf | Acre | 2019 | S011P | 0.8715134 | 0.7777214 | 0.9653054 | 0.05490903 |\n",
"| Amazonas | uf | Amazonas | 2019 | S011P | 0.7675780 | 0.6671789 | 0.8679770 | 0.06673581 |\n",
"| Roraima | uf | Roraima | 2019 | S011P | 0.8092680 | 0.6458560 | 0.9726801 | 0.10302523 |\n",
"| Pará | uf | Pará | 2019 | S011P | 0.7977664 | 0.7155590 | 0.8799738 | 0.05257592 |\n",
"| Amapá | uf | Amapá | 2019 | S011P | 0.8772571 | 0.7620805 | 0.9924338 | 0.06698682 |\n",
"| Tocantins | uf | Tocantins | 2019 | S011P | 0.8597343 | 0.7646931 | 0.9547755 | 0.05640264 |\n",
"| Maranhão | uf | Maranhão | 2019 | S011P | 0.6763398 | 0.5883963 | 0.7642833 | 0.06634235 |\n",
"| Piauí | uf | Piauí | 2019 | S011P | 0.7918508 | 0.6875284 | 0.8961731 | 0.06721805 |\n",
"| Ceará | uf | Ceará | 2019 | S011P | 0.7318008 | 0.6417493 | 0.8218522 | 0.06278410 |\n",
"| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S011P | 0.8062034 | 0.7020560 | 0.9103508 | 0.06591067 |\n",
"| Paraíba | uf | Paraíba | 2019 | S011P | 0.6354086 | 0.5038523 | 0.7669648 | 0.10563561 |\n",
"| Pernambuco | uf | Pernambuco | 2019 | S011P | 0.7903354 | 0.7019489 | 0.8787220 | 0.05705934 |\n",
"| Alagoas | uf | Alagoas | 2019 | S011P | 0.7448166 | 0.6421750 | 0.8474582 | 0.07031143 |\n",
"| Sergipe | uf | Sergipe | 2019 | S011P | 0.7055517 | 0.5524472 | 0.8586563 | 0.11071620 |\n",
"| Bahia | uf | Bahia | 2019 | S011P | 0.8109277 | 0.6995516 | 0.9223039 | 0.07007479 |\n",
"| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n",
"| João Pessoa4 | capital | João Pessoa | 2019 | S015P | 0.9058899 | 0.8197244 | 0.9920555 | 0.048529968 |\n",
"| Recife4 | capital | Recife | 2019 | S015P | 0.9442654 | 0.8641629 | 1.0243678 | 0.043281640 |\n",
"| Maceió4 | capital | Maceió | 2019 | S015P | 0.9317416 | 0.8584334 | 1.0050497 | 0.040142881 |\n",
"| Aracaju4 | capital | Aracaju | 2019 | S015P | 0.9253580 | 0.8200606 | 1.0306555 | 0.058057736 |\n",
"| Salvador4 | capital | Salvador | 2019 | S015P | 0.8851483 | 0.7279619 | 1.0423347 | 0.090604712 |\n",
"| Belo Horizonte4 | capital | Belo Horizonte | 2019 | S015P | 0.7831622 | 0.6265665 | 0.9397578 | 0.102018733 |\n",
"| Vitória4 | capital | Vitória | 2019 | S015P | 0.8295784 | 0.6389091 | 1.0202477 | 0.117266844 |\n",
"| Rio de Janeiro9 | capital | Rio de Janeiro | 2019 | S015P | 0.9830347 | 0.9513834 | 1.0146860 | 0.016427602 |\n",
"| São Paulo8 | capital | São Paulo | 2019 | S015P | 0.7818142 | 0.6130362 | 0.9505922 | 0.110144846 |\n",
"| Curitiba4 | capital | Curitiba | 2019 | S015P | 0.8708550 | 0.7478725 | 0.9938376 | 0.072052572 |\n",
"| Florianópolis4 | capital | Florianópolis | 2019 | S015P | 0.7691331 | 0.5210958 | 1.0171704 | 0.164538473 |\n",
"| Porto Alegre4 | capital | Porto Alegre | 2019 | S015P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000000 |\n",
"| Campo Grande4 | capital | Campo Grande | 2019 | S015P | 0.9588850 | 0.9041423 | 1.0136277 | 0.029128061 |\n",
"| Cuiabá4 | capital | Cuiabá | 2019 | S015P | 0.8613471 | 0.6884873 | 1.0342069 | 0.102392414 |\n",
"| Goiânia4 | capital | Goiânia | 2019 | S015P | 0.9112432 | 0.7458644 | 1.0766219 | 0.092597080 |\n",
"| Brasília4 | capital | Brasília | 2019 | S015P | 0.8353633 | 0.7275334 | 0.9431932 | 0.065859086 |\n",
"| Fundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2019 | S015P | 0.8420161 | 0.7906370 | 0.8933952 | 0.031132788 |\n",
"| Médio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2019 | S015P | 0.8999967 | 0.8673529 | 0.9326406 | 0.018505991 |\n",
"| Superior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2019 | S015P | 0.9163796 | 0.8947965 | 0.9379628 | 0.012016843 |\n",
"| Superior completo4 | gescol | Superior completo | 2019 | S015P | 0.9154731 | 0.8764884 | 0.9544578 | 0.021727051 |\n",
"| S011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |\n",
"| S011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |\n",
"| S012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |\n",
"| S012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |\n",
"| S013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |\n",
"| S013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |\n",
"| S014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |\n",
"| S014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |\n",
"| S015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |\n",
"| S015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |\n",
"\n"
],
"text/plain": [
" abr_tipo \n",
"Branca raça \n",
"Preta raça \n",
"Parda raça \n",
"Até 1/2 SM rend_per_capita\n",
"1/2 até 1 SM rend_per_capita\n",
"1 até 2 SM rend_per_capita\n",
"2 até 3 SM rend_per_capita\n",
"Mais de 3 SM rend_per_capita\n",
"18 a 24 anos fx_idade_S \n",
"25 a 29 anos fx_idade_S \n",
"30 a 39 anos fx_idade_S \n",
"40 anos ou mais fx_idade_S \n",
"urbano urb_rur \n",
"rural urb_rur \n",
"Rondônia uf \n",
"Acre uf \n",
"Amazonas uf \n",
"Roraima uf \n",
"Pará uf \n",
"Amapá uf \n",
"Tocantins uf \n",
"Maranhão uf \n",
"Piauí uf \n",
"Ceará uf \n",
"Rio Grande do Norte uf \n",
"Paraíba uf \n",
"Pernambuco uf \n",
"Alagoas uf \n",
"Sergipe uf \n",
"Bahia uf \n",
"⋮ ⋮ \n",
"João Pessoa4 capital \n",
"Recife4 capital \n",
"Maceió4 capital \n",
"Aracaju4 capital \n",
"Salvador4 capital \n",
"Belo Horizonte4 capital \n",
"Vitória4 capital \n",
"Rio de Janeiro9 capital \n",
"São Paulo8 capital \n",
"Curitiba4 capital \n",
"Florianópolis4 capital \n",
"Porto Alegre4 capital \n",
"Campo Grande4 capital \n",
"Cuiabá4 capital \n",
"Goiânia4 capital \n",
"Brasília4 capital \n",
"Fundamental incompleto ou equivalente4 gescol \n",
"Médio incompleto ou equivalente4 gescol \n",
"Superior incompleto ou equivalente4 gescol \n",
"Superior completo4 gescol \n",
"S011PSim total \n",
"S011PSim1 total \n",
"S012PSim total \n",
"S012PSim1 total \n",
"S013PSim total \n",
"S013PSim1 total \n",
"S014PSim total \n",
"S014PSim1 total \n",
"S015PSim total \n",
"S015PSim1 total \n",
" abr_nome \n",
"Branca Branca \n",
"Preta Preta \n",
"Parda Parda \n",
"Até 1/2 SM Até 1/2 SM \n",
"1/2 até 1 SM 1/2 até 1 SM \n",
"1 até 2 SM 1 até 2 SM \n",
"2 até 3 SM 2 até 3 SM \n",
"Mais de 3 SM Mais de 3 SM \n",
"18 a 24 anos 18 a 24 anos \n",
"25 a 29 anos 25 a 29 anos \n",
"30 a 39 anos 30 a 39 anos \n",
"40 anos ou mais 40 anos ou mais \n",
"urbano urbano \n",
"rural rural \n",
"Rondônia Rondônia \n",
"Acre Acre \n",
"Amazonas Amazonas \n",
"Roraima Roraima \n",
"Pará Pará \n",
"Amapá Amapá \n",
"Tocantins Tocantins \n",
"Maranhão Maranhão \n",
"Piauí Piauí \n",
"Ceará Ceará \n",
"Rio Grande do Norte Rio Grande do Norte \n",
"Paraíba Paraíba \n",
"Pernambuco Pernambuco \n",
"Alagoas Alagoas \n",
"Sergipe Sergipe \n",
"Bahia Bahia \n",
"⋮ ⋮ \n",
"João Pessoa4 João Pessoa \n",
"Recife4 Recife \n",
"Maceió4 Maceió \n",
"Aracaju4 Aracaju \n",
"Salvador4 Salvador \n",
"Belo Horizonte4 Belo Horizonte \n",
"Vitória4 Vitória \n",
"Rio de Janeiro9 Rio de Janeiro \n",
"São Paulo8 São Paulo \n",
"Curitiba4 Curitiba \n",
"Florianópolis4 Florianópolis \n",
"Porto Alegre4 Porto Alegre \n",
"Campo Grande4 Campo Grande \n",
"Cuiabá4 Cuiabá \n",
"Goiânia4 Goiânia \n",
"Brasília4 Brasília \n",
"Fundamental incompleto ou equivalente4 Fundamental incompleto ou equivalente\n",
"Médio incompleto ou equivalente4 Médio incompleto ou equivalente \n",
"Superior incompleto ou equivalente4 Superior incompleto ou equivalente \n",
"Superior completo4 Superior completo \n",
"S011PSim Brasil \n",
"S011PSim1 Capital \n",
"S012PSim Brasil \n",
"S012PSim1 Capital \n",
"S013PSim Brasil \n",
"S013PSim1 Capital \n",
"S014PSim Brasil \n",
"S014PSim1 Capital \n",
"S015PSim Brasil \n",
"S015PSim1 Capital \n",
" Ano Indicador Sim LowerS \n",
"Branca 2019 S011P 0.7873750 0.7422421\n",
"Preta 2019 S011P 0.7794471 0.7046830\n",
"Parda 2019 S011P 0.8112202 0.7821922\n",
"Até 1/2 SM 2019 S011P 0.7674890 0.7344969\n",
"1/2 até 1 SM 2019 S011P 0.8227927 0.7772524\n",
"1 até 2 SM 2019 S011P 0.8572637 0.7962834\n",
"2 até 3 SM 2019 S011P 0.7506448 0.6173035\n",
"Mais de 3 SM 2019 S011P 0.7643860 0.6571495\n",
"18 a 24 anos 2019 S011P 0.7642557 0.7172469\n",
"25 a 29 anos 2019 S011P 0.7897381 0.7367238\n",
"30 a 39 anos 2019 S011P 0.8265024 0.7909434\n",
"40 anos ou mais 2019 S011P 0.7832286 0.6845172\n",
"urbano 2019 S011P 0.8123256 0.7851979\n",
"rural 2019 S011P 0.7123457 0.6653805\n",
"Rondônia 2019 S011P 0.8113854 0.7112533\n",
"Acre 2019 S011P 0.8715134 0.7777214\n",
"Amazonas 2019 S011P 0.7675780 0.6671789\n",
"Roraima 2019 S011P 0.8092680 0.6458560\n",
"Pará 2019 S011P 0.7977664 0.7155590\n",
"Amapá 2019 S011P 0.8772571 0.7620805\n",
"Tocantins 2019 S011P 0.8597343 0.7646931\n",
"Maranhão 2019 S011P 0.6763398 0.5883963\n",
"Piauí 2019 S011P 0.7918508 0.6875284\n",
"Ceará 2019 S011P 0.7318008 0.6417493\n",
"Rio Grande do Norte 2019 S011P 0.8062034 0.7020560\n",
"Paraíba 2019 S011P 0.6354086 0.5038523\n",
"Pernambuco 2019 S011P 0.7903354 0.7019489\n",
"Alagoas 2019 S011P 0.7448166 0.6421750\n",
"Sergipe 2019 S011P 0.7055517 0.5524472\n",
"Bahia 2019 S011P 0.8109277 0.6995516\n",
"⋮ ⋮ ⋮ ⋮ ⋮ \n",
"João Pessoa4 2019 S015P 0.9058899 0.8197244\n",
"Recife4 2019 S015P 0.9442654 0.8641629\n",
"Maceió4 2019 S015P 0.9317416 0.8584334\n",
"Aracaju4 2019 S015P 0.9253580 0.8200606\n",
"Salvador4 2019 S015P 0.8851483 0.7279619\n",
"Belo Horizonte4 2019 S015P 0.7831622 0.6265665\n",
"Vitória4 2019 S015P 0.8295784 0.6389091\n",
"Rio de Janeiro9 2019 S015P 0.9830347 0.9513834\n",
"São Paulo8 2019 S015P 0.7818142 0.6130362\n",
"Curitiba4 2019 S015P 0.8708550 0.7478725\n",
"Florianópolis4 2019 S015P 0.7691331 0.5210958\n",
"Porto Alegre4 2019 S015P 1.0000000 1.0000000\n",
"Campo Grande4 2019 S015P 0.9588850 0.9041423\n",
"Cuiabá4 2019 S015P 0.8613471 0.6884873\n",
"Goiânia4 2019 S015P 0.9112432 0.7458644\n",
"Brasília4 2019 S015P 0.8353633 0.7275334\n",
"Fundamental incompleto ou equivalente4 2019 S015P 0.8420161 0.7906370\n",
"Médio incompleto ou equivalente4 2019 S015P 0.8999967 0.8673529\n",
"Superior incompleto ou equivalente4 2019 S015P 0.9163796 0.8947965\n",
"Superior completo4 2019 S015P 0.9154731 0.8764884\n",
"S011PSim 2019 S011P 0.7970506 0.7729093\n",
"S011PSim1 2019 S011P 0.7856012 0.7367190\n",
"S012PSim 2019 S012P 0.7709437 0.7450416\n",
"S012PSim1 2019 S012P 0.7605274 0.7105432\n",
"S013PSim 2019 S013P 0.8423751 0.8206783\n",
"S013PSim1 2019 S013P 0.8497500 0.8098841\n",
"S014PSim 2019 S014P 0.8117146 0.7881055\n",
"S014PSim1 2019 S014P 0.8189464 0.7762082\n",
"S015PSim 2019 S015P 0.8997072 0.8831155\n",
"S015PSim1 2019 S015P 0.8832092 0.8432095\n",
" UpperS cvS \n",
"Branca 0.8325079 0.02924581 \n",
"Preta 0.8542112 0.04893935 \n",
"Parda 0.8402482 0.01825704 \n",
"Até 1/2 SM 0.8004810 0.02193252 \n",
"1/2 até 1 SM 0.8683330 0.02823954 \n",
"1 até 2 SM 0.9182440 0.03629337 \n",
"2 até 3 SM 0.8839861 0.09063210 \n",
"Mais de 3 SM 0.8716225 0.07157838 \n",
"18 a 24 anos 0.8112645 0.03138288 \n",
"25 a 29 anos 0.8427525 0.03425013 \n",
"30 a 39 anos 0.8620615 0.02195119 \n",
"40 anos ou mais 0.8819400 0.06430293 \n",
"urbano 0.8394532 0.01703859 \n",
"rural 0.7593109 0.03363856 \n",
"Rondônia 0.9115175 0.06296482 \n",
"Acre 0.9653054 0.05490903 \n",
"Amazonas 0.8679770 0.06673581 \n",
"Roraima 0.9726801 0.10302523 \n",
"Pará 0.8799738 0.05257592 \n",
"Amapá 0.9924338 0.06698682 \n",
"Tocantins 0.9547755 0.05640264 \n",
"Maranhão 0.7642833 0.06634235 \n",
"Piauí 0.8961731 0.06721805 \n",
"Ceará 0.8218522 0.06278410 \n",
"Rio Grande do Norte 0.9103508 0.06591067 \n",
"Paraíba 0.7669648 0.10563561 \n",
"Pernambuco 0.8787220 0.05705934 \n",
"Alagoas 0.8474582 0.07031143 \n",
"Sergipe 0.8586563 0.11071620 \n",
"Bahia 0.9223039 0.07007479 \n",
"⋮ ⋮ ⋮ \n",
"João Pessoa4 0.9920555 0.048529968\n",
"Recife4 1.0243678 0.043281640\n",
"Maceió4 1.0050497 0.040142881\n",
"Aracaju4 1.0306555 0.058057736\n",
"Salvador4 1.0423347 0.090604712\n",
"Belo Horizonte4 0.9397578 0.102018733\n",
"Vitória4 1.0202477 0.117266844\n",
"Rio de Janeiro9 1.0146860 0.016427602\n",
"São Paulo8 0.9505922 0.110144846\n",
"Curitiba4 0.9938376 0.072052572\n",
"Florianópolis4 1.0171704 0.164538473\n",
"Porto Alegre4 1.0000000 0.000000000\n",
"Campo Grande4 1.0136277 0.029128061\n",
"Cuiabá4 1.0342069 0.102392414\n",
"Goiânia4 1.0766219 0.092597080\n",
"Brasília4 0.9431932 0.065859086\n",
"Fundamental incompleto ou equivalente4 0.8933952 0.031132788\n",
"Médio incompleto ou equivalente4 0.9326406 0.018505991\n",
"Superior incompleto ou equivalente4 0.9379628 0.012016843\n",
"Superior completo4 0.9544578 0.021727051\n",
"S011PSim 0.8211920 0.015453529\n",
"S011PSim1 0.8344834 0.031746843\n",
"S012PSim 0.7968458 0.017142104\n",
"S012PSim1 0.8105116 0.033532798\n",
"S013PSim 0.8640719 0.013141415\n",
"S013PSim1 0.8896158 0.023936576\n",
"S014PSim 0.8353238 0.014839855\n",
"S014PSim1 0.8616846 0.026626396\n",
"S015PSim 0.9162988 0.009408937\n",
"S015PSim1 0.9232089 0.023107083"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"matrizIndicadores"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Exportando tabela de indicadores calculados - Módulo S 2019"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [],
"source": [
"diretorio_saida <- \"\"\n",
"write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "R",
"language": "R",
"name": "ir"
},
"language_info": {
"codemirror_mode": "r",
"file_extension": ".r",
"mimetype": "text/x-r-source",
"name": "R",
"pygments_lexer": "r",
"version": "4.1.2"
}
},
"nbformat": 4,
"nbformat_minor": 4
}