{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - S 2019 Pré-natal - Parte 3" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(tictoc)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 293726
  2. 1087
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 293726\n", "\\item 1087\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 293726\n", "2. 1087\n", "\n", "\n" ], "text/plain": [ "[1] 293726 1087" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.00562 0.26621 0.54401 1.00000 1.12765 61.09981 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos e calculando peso amostral - summary de verificação\n", "pns2019.1<- %>% filter(V0025A==1) \n", "pns2019.1<-pns2019.1 %>% mutate(peso_morador_selec=((V00291*(90846/168426190))))\n", "pns2019.1<-pns2019.1 %>% filter(!is.na(peso_morador_selec))\n", "summary(pns2019.1$peso_morador_selec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
2131
Não
603
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2131\n", "\\item[Não] 603\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2131Não\n", ": 603NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2131 603 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2071
Não
663
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2071\n", "\\item[Não] 663\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2071Não\n", ": 663NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2071 663 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2246
Não
488
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2246\n", "\\item[Não] 488\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2246Não\n", ": 488NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2246 488 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2172
Não
562
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2172\n", "\\item[Não] 562\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2172Não\n", ": 562NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2172 562 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2423
Não
311
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2423\n", "\\item[Não] 311\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2423Não\n", ": 311NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2423 311 88112 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Desfechos - Indicadores\n", "\n", "# 11. Proporção de mulheres que realizaram teste/exame para sífilis durante o pré-natal - S011P.\n", "\n", "pns2019.1$S011P <- NA\n", "pns2019.1$S011P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S011P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S080==1] <- 1\n", "pns2019.1$S011P<-factor(pns2019.1$S011P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S011P)\n", "\n", "# 12. Proporção de mulheres que realizaram teste/exame para sífilis durante o pré-natal e receberam o resultado antes do parto - S012P.\n", "\n", "pns2019.1$S012P <- NA\n", "pns2019.1$S012P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S012P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S081==1] <- 1\n", "pns2019.1$S012P<-factor(pns2019.1$S012P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S012P)\n", "\n", "# 13. Proporção de mulheres que realizaram teste/exame para hepatite B durante o pré-natal - S013P.\n", "\n", "pns2019.1$S013P <- NA\n", "pns2019.1$S013P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S013P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S088==1] <- 1\n", "pns2019.1$S013P<-factor(pns2019.1$S013P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S013P)\n", "\n", "# 14. Proporção de mulheres que realizaram teste/exame para hepatite B durante o pré-natal e receberam o resultado antes do parto - S014P.\n", "\n", "pns2019.1$S014P <- NA\n", "pns2019.1$S014P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S014P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S089==1] <- 1\n", "pns2019.1$S014P<-factor(pns2019.1$S014P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S014P)\n", "\n", "# 15. Proporção de mulheres que tiveram solicitação de teste/exame para HIV/AIDS durante o pré-natal - S015P.\n", "\n", "pns2019.1$S015P <- NA\n", "pns2019.1$S015P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S015P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S090==1] <- 1\n", "pns2019.1$S015P<-factor(pns2019.1$S015P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S015P)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
urbano
69873
rural
20973
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[urbano] 69873\n", "\\item[rural] 20973\n", "\\end{description*}\n" ], "text/markdown": [ "urbano\n", ": 69873rural\n", ": 20973\n", "\n" ], "text/plain": [ "urbano rural \n", " 69873 20973 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2019.1 <- pns2019.1 %>% rename(Sit_Urbano_Rural=V0026)\n", "pns2019.1$Sit_Urbano_Rural<-factor(pns2019.1$Sit_Urbano_Rural, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n", "summary(pns2019.1$Sit_Urbano_Rural)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
2176
Acre
2380
Amazonas
3479
Roraima
2238
Pará
3853
Amapá
1554
Tocantins
1922
Maranhão
5080
Piauí
2740
Ceará
4265
Rio Grande do Norte
2962
Paraíba
3158
Pernambuco
4083
Alagoas
2987
Sergipe
2610
Bahia
3659
Minas Gerais
5209
Espírito Santo
3541
Rio de Janeiro
4966
São Paulo
6114
Paraná
3967
Santa Catarina
3738
Rio Grande do Sul
3767
Mato Grosso do Sul
2863
Mato Grosso
2468
Goiás
2702
Distrito Federal
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 2176\n", "\\item[Acre] 2380\n", "\\item[Amazonas] 3479\n", "\\item[Roraima] 2238\n", "\\item[Pará] 3853\n", "\\item[Amapá] 1554\n", "\\item[Tocantins] 1922\n", "\\item[Maranhão] 5080\n", "\\item[Piauí] 2740\n", "\\item[Ceará] 4265\n", "\\item[Rio Grande do Norte] 2962\n", "\\item[Paraíba] 3158\n", "\\item[Pernambuco] 4083\n", "\\item[Alagoas] 2987\n", "\\item[Sergipe] 2610\n", "\\item[Bahia] 3659\n", "\\item[Minas Gerais] 5209\n", "\\item[Espírito Santo] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Paraná] 3967\n", "\\item[Santa Catarina] 3738\n", "\\item[Rio Grande do Sul] 3767\n", "\\item[Mato Grosso do Sul] 2863\n", "\\item[Mato Grosso] 2468\n", "\\item[Goiás] 2702\n", "\\item[Distrito Federal] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 2176Acre\n", ": 2380Amazonas\n", ": 3479Roraima\n", ": 2238Pará\n", ": 3853Amapá\n", ": 1554Tocantins\n", ": 1922Maranhão\n", ": 5080Piauí\n", ": 2740Ceará\n", ": 4265Rio Grande do Norte\n", ": 2962Paraíba\n", ": 3158Pernambuco\n", ": 4083Alagoas\n", ": 2987Sergipe\n", ": 2610Bahia\n", ": 3659Minas Gerais\n", ": 5209Espírito Santo\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Paraná\n", ": 3967Santa Catarina\n", ": 3738Rio Grande do Sul\n", ": 3767Mato Grosso do Sul\n", ": 2863Mato Grosso\n", ": 2468Goiás\n", ": 2702Distrito Federal\n", ": 2365\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 2176 2380 3479 2238 \n", " Pará Amapá Tocantins Maranhão \n", " 3853 1554 1922 5080 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 2740 4265 2962 3158 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 4083 2987 2610 3659 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 5209 3541 4966 6114 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 3967 3738 3767 2863 \n", " Mato Grosso Goiás Distrito Federal \n", " 2468 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2019.1 <- pns2019.1 %>% rename(Unidades_da_Federacao=V0001)\n", "pns2019.1$Unidades_da_Federacao<-factor(pns2019.1$Unidades_da_Federacao, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2019.1$Unidades_da_Federacao)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
17602
Nordeste
31544
Sudeste
19830
Sul
11472
Centro-Oeste
10398
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 17602\n", "\\item[Nordeste] 31544\n", "\\item[Sudeste] 19830\n", "\\item[Sul] 11472\n", "\\item[Centro-Oeste] 10398\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 17602Nordeste\n", ": 31544Sudeste\n", ": 19830Sul\n", ": 11472Centro-Oeste\n", ": 10398\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 17602 31544 19830 11472 10398 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2019.1 <- pns2019.1 %>% \n", " mutate(GrandesRegioes = fct_collapse(Unidades_da_Federacao, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n", "summary(pns2019.1$GrandesRegioes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
2176
Rio Branco
2380
Manaus
3479
Boa Vista
2238
Belém
3853
Macapá
1554
Palmas
1922
São Luís
5080
Teresina
2740
Fortaleza
4265
Natal
2962
João Pessoa
3158
Recife
4083
Maceió
2987
Aracaju
2610
Salvador
3659
Belo Horizonte
5209
Vitória
3541
Rio de Janeiro
4966
São Paulo
6114
Curitiba
3967
Florianópolis
3738
Porto Alegre
3767
Campo Grande
2863
Cuiabá
2468
Goiânia
2702
Brasília
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 2176\n", "\\item[Rio Branco] 2380\n", "\\item[Manaus] 3479\n", "\\item[Boa Vista] 2238\n", "\\item[Belém] 3853\n", "\\item[Macapá] 1554\n", "\\item[Palmas] 1922\n", "\\item[São Luís] 5080\n", "\\item[Teresina] 2740\n", "\\item[Fortaleza] 4265\n", "\\item[Natal] 2962\n", "\\item[João Pessoa] 3158\n", "\\item[Recife] 4083\n", "\\item[Maceió] 2987\n", "\\item[Aracaju] 2610\n", "\\item[Salvador] 3659\n", "\\item[Belo Horizonte] 5209\n", "\\item[Vitória] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Curitiba] 3967\n", "\\item[Florianópolis] 3738\n", "\\item[Porto Alegre] 3767\n", "\\item[Campo Grande] 2863\n", "\\item[Cuiabá] 2468\n", "\\item[Goiânia] 2702\n", "\\item[Brasília] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 2176Rio Branco\n", ": 2380Manaus\n", ": 3479Boa Vista\n", ": 2238Belém\n", ": 3853Macapá\n", ": 1554Palmas\n", ": 1922São Luís\n", ": 5080Teresina\n", ": 2740Fortaleza\n", ": 4265Natal\n", ": 2962João Pessoa\n", ": 3158Recife\n", ": 4083Maceió\n", ": 2987Aracaju\n", ": 2610Salvador\n", ": 3659Belo Horizonte\n", ": 5209Vitória\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Curitiba\n", ": 3967Florianópolis\n", ": 3738Porto Alegre\n", ": 3767Campo Grande\n", ": 2863Cuiabá\n", ": 2468Goiânia\n", ": 2702Brasília\n", ": 2365\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 2176 2380 3479 2238 3853 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 1554 1922 5080 2740 4265 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 2962 3158 4083 2987 2610 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 3659 5209 3541 4966 6114 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 3967 3738 3767 2863 2468 \n", " Goiânia Brasília \n", " 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2019.1<- pns2019.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federacao,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2019.1$Capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
18 a 24 anos
8145
25 a 29 anos
7249
30 a 39 anos
18150
40 anos ou mais
54987
NA's
2315
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[18 a 24 anos] 8145\n", "\\item[25 a 29 anos] 7249\n", "\\item[30 a 39 anos] 18150\n", "\\item[40 anos ou mais] 54987\n", "\\item[NA's] 2315\n", "\\end{description*}\n" ], "text/markdown": [ "18 a 24 anos\n", ": 814525 a 29 anos\n", ": 724930 a 39 anos\n", ": 1815040 anos ou mais\n", ": 54987NA's\n", ": 2315\n", "\n" ], "text/plain": [ " 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais NA's \n", " 8145 7249 18150 54987 2315 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Faixas Etárias\n", "pns2019.1 <- pns2019.1 %>% mutate(fx_idade_S=cut(C008,\n", " breaks = c(18,25,30,40,120),\n", " labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n", " ordered_result = TRUE, right = FALSE))\n", "summary(pns2019.1$fx_idade_S)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
33133
Preta
10345
Parda
45994
NA's
1374
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 33133\n", "\\item[Preta] 10345\n", "\\item[Parda] 45994\n", "\\item[NA's] 1374\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 33133Preta\n", ": 10345Parda\n", ": 45994NA's\n", ": 1374\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 33133 10345 45994 1374 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Raça\n", "pns2019.1 <- pns2019.1 %>% mutate(Raca= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "\n", "pns2019.1$Raca<-factor(pns2019.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "\n", "summary(pns2019.1$Raca)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
23697
1/2 até 1 SM
26406
1 até 2 SM
22466
2 até 3 SM
7612
Mais de 3 SM
10643
NA's
22
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 23697\n", "\\item[1/2 até 1 SM] 26406\n", "\\item[1 até 2 SM] 22466\n", "\\item[2 até 3 SM] 7612\n", "\\item[Mais de 3 SM] 10643\n", "\\item[NA's] 22\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 236971/2 até 1 SM\n", ": 264061 até 2 SM\n", ": 224662 até 3 SM\n", ": 7612Mais de 3 SM\n", ": 10643NA's\n", ": 22\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 23697 26406 22466 7612 10643 22 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rendimento domiciliar per capita\n", "pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n", " ifelse(VDF004%in% 3, 2, \n", " ifelse(VDF004%in% 4, 3,\n", " ifelse(VDF004%in% 5, 4, \n", " ifelse(is.na(VDF004)==TRUE, NA_real_, 5))))))\n", "\n", "pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n", " \"2 até 3 SM\",\"Mais de 3 SM\"))\n", "summary(pns2019.1$rend_per_capita)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Escolaridade" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Fundamental incompleto ou equivalente
36276
Médio incompleto ou equivalente
13520
Superior incompleto ou equivalente
27433
Superior completo
13617
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Fundamental incompleto ou equivalente] 36276\n", "\\item[Médio incompleto ou equivalente] 13520\n", "\\item[Superior incompleto ou equivalente] 27433\n", "\\item[Superior completo] 13617\n", "\\end{description*}\n" ], "text/markdown": [ "Fundamental incompleto ou equivalente\n", ": 36276Médio incompleto ou equivalente\n", ": 13520Superior incompleto ou equivalente\n", ": 27433Superior completo\n", ": 13617\n", "\n" ], "text/plain": [ "Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n", " 36276 13520 \n", " Superior incompleto ou equivalente Superior completo \n", " 27433 13617 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Escolaridade\n", "pns2019.1 <- pns2019.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n", " ifelse(VDD004A%in% 3:4, 2, \n", " ifelse(VDD004A%in% 5:6, 3,4\n", " ))))\n", "\n", "pns2019.1$gescol<-factor(pns2019.1$gescol, levels=c(1,2,3,4), \n", " labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n", " \"Superior incompleto ou equivalente\",\"Superior completo\"))\n", "summary(pns2019.1$gescol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec C008 \n", " 1210010: 1167 140001681: 18 Min. : 0.00562 Min. : 15.00 \n", " 1410011: 792 140003815: 18 1st Qu.: 0.26621 1st Qu.: 32.00 \n", " 2710111: 779 140005777: 18 Median : 0.54401 Median : 45.00 \n", " 2410011: 745 140006746: 18 Mean : 1.00000 Mean : 46.39 \n", " 5010011: 738 140007081: 18 3rd Qu.: 1.12765 3rd Qu.: 60.00 \n", " 3210011: 711 140007715: 18 Max. :61.09981 Max. :107.00 \n", " (Other):85914 (Other) :90738 \n", " C006 C009 V0031 Sit_Urbano_Rural\n", " Min. :1.000 Min. :1.000 Min. :1.000 urbano:69873 \n", " 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 rural :20973 \n", " Median :2.000 Median :4.000 Median :2.000 \n", " Mean :1.529 Mean :2.679 Mean :2.605 \n", " 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:4.000 \n", " Max. :2.000 Max. :9.000 Max. :4.000 \n", " \n", " Unidades_da_Federacao GrandesRegioes Capital \n", " São Paulo : 6114 Norte :17602 São Paulo : 6114 \n", " Minas Gerais : 5209 Nordeste :31544 Belo Horizonte: 5209 \n", " Maranhão : 5080 Sudeste :19830 São Luís : 5080 \n", " Rio de Janeiro: 4966 Sul :11472 Rio de Janeiro: 4966 \n", " Ceará : 4265 Centro-Oeste:10398 Fortaleza : 4265 \n", " Pernambuco : 4083 Recife : 4083 \n", " (Other) :61129 (Other) :61129 \n", " fx_idade_S Raca rend_per_capita \n", " 18 a 24 anos : 8145 Branca:33133 Até 1/2 SM :23697 \n", " 25 a 29 anos : 7249 Preta :10345 1/2 até 1 SM:26406 \n", " 30 a 39 anos :18150 Parda :45994 1 até 2 SM :22466 \n", " 40 anos ou mais:54987 NA's : 1374 2 até 3 SM : 7612 \n", " NA's : 2315 Mais de 3 SM:10643 \n", " NA's : 22 \n", " \n", " gescol S011P S012P \n", " Fundamental incompleto ou equivalente:36276 Sim : 2131 Sim : 2071 \n", " Médio incompleto ou equivalente :13520 Não : 603 Não : 663 \n", " Superior incompleto ou equivalente :27433 NA's:88112 NA's:88112 \n", " Superior completo :13617 \n", " \n", " \n", " \n", " S013P S014P S015P S068 \n", " Sim : 2246 Sim : 2172 Sim : 2423 Min. :1.00 \n", " Não : 488 Não : 562 Não : 311 1st Qu.:1.00 \n", " NA's:88112 NA's:88112 NA's:88112 Median :1.00 \n", " Mean :1.03 \n", " 3rd Qu.:1.00 \n", " Max. :2.00 \n", " NA's :87936 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando variáveis para cálculo de indicadores no survey\n", "pns2019Ssurvey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"C008\", \"C006\", \"C009\", \"V0031\", \n", " \"Sit_Urbano_Rural\", \"Unidades_da_Federacao\", \"GrandesRegioes\", \"Capital\", \"fx_idade_S\", \"Raca\", \"rend_per_capita\", \"gescol\",\n", " \"S011P\", \"S012P\", \"S013P\", \"S014P\", \"S015P\", \"S068\") \n", "summary(pns2019Ssurvey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo S - Parte3 2019" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "#Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2019Ssurvey, file.path(diretorio_saida, \"pns2019Ssurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "desPNS=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_morador_selec, nest=TRUE, \n", " data=pns2019Ssurvey)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "#survey design S006P a S010P\n", "desPNSS=subset(desPNS, C006==2 & C008>=18 & S068==1)\n", "desPNSS_C=subset(desPNS, C006==2 & C008>=18 & S068==1 & V0031==1)\n", "desPNSS_R=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(Raca))\n", "desPNSS_Rend=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(rend_per_capita))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Criação da tabela de indicadores\n", "Essa tabela é responsável por unir os indicadores no formato do painel de indicadores" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores = data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "ListaIndicadores = c(~S011P, ~S012P, ~S013P, ~S014P, ~S015P)\n", "ListaIndicadoresTexto = c(\"S011P\", \"S012P\", \"S013P\", \"S014P\", \"S015P\" )\n", "ListaTotais = c('Brasil','Capital')\n", "Ano <- \"2019\"" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "ListaDominios = c(~Raca,~rend_per_capita,~fx_idade_S,~Sit_Urbano_Rural,\n", " ~Unidades_da_Federacao,~GrandesRegioes,~Capital,~gescol)\n", "ListaDominiosTexto= c(\"raça\",\"rend_per_capita\",\"fx_idade_S\",\"urb_rur\",\n", " \"uf\",\"região\",\"capital\",\"gescol\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores\n", "Essas iterações rodam por indicador, abrangência e por design" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "#Cálculo dos indicadores usando o pacote survey \n", "i <- 0\n", "#Para cada indicador\n", "for( indicador in ListaIndicadores){\n", " i <- i + 1; j <- 1\n", " #Para cada dominio\n", " for (dominio in ListaDominios){\n", " #design especifico para capital que é subconjunto do dataframe total\n", " #design geral para capital \n", " if (ListaDominiosTexto[j]==\"capital\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS_C , svymean,vartype= c(\"ci\",\"cv\"))\n", " #design geral para raça\n", " } else if (ListaDominiosTexto[j]==\"raça\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS_R , svymean,vartype= c(\"ci\",\"cv\")) \n", " #design geral para renda per capita\n", " } else if (ListaDominiosTexto[j]==\"rend_per_capita\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS_Rend , svymean,vartype= c(\"ci\",\"cv\")) \n", " #design geral para o subconjunto maior que 18 anos \n", " } else { \n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS , svymean,vartype= c(\"ci\",\"cv\")) \n", " }\n", " #União do dataframe de indicadores no formato do painel disponibilizado para PNS\n", " dataframe_indicador<-data.frame(dataframe_indicador)\n", " colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Nao\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n", " dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n", " dataframe_indicador$Ano <- Ano\n", " dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n", " matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n", " j <- j + 1\n", " }\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando a tabela pela abrangência total" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "i = 0\n", "# para cada indicador\n", "for(indicador in ListaIndicadores){\n", " i <- i + 1\n", " # para os totais Brasil e total das capitais\n", " for(total in ListaTotais){\n", " dataframe_indicador <- data.frame()\n", " dataframe_indicador_S <- data.frame()\n", " # Uso do design que é subconjunto do dataset para cada Capital\n", " if (total == \"Capital\"){\n", " #Indicadores que são subconjunto do dataset total\n", " dataframe_indicador <- svymean(indicador,desPNSS_C)\n", " } else {\n", " dataframe_indicador <- svymean(indicador,desPNSS)\n", " }\n", " intervalo_confianca <- confint(dataframe_indicador)\n", " coeficiente_variacao <- cv(dataframe_indicador)\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n", " \n", " dataframe_indicador <- dataframe_indicador %>% \n", " select('mean','X2.5..','X97.5..',coeficiente_variacao) \n", " dataframe_indicador_S <- dataframe_indicador %>% \n", " slice(1)\n", " \n", " colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n", " dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n", " \n", " dataframe_indicador_S$abr_tipo <- \"total\"\n", " dataframe_indicador_S$abr_nome <- total\n", " dataframe_indicador_S$Ano <- Ano\n", " #Uso design do subconjunto para raça/cor que inclui preta,branca e parda \n", " # as outras raças não possuiam dados suficientes para os dominios dos indicadores\n", " \n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n", " \n", " matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 10 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><chr><chr><chr><dbl><dbl><dbl><dbl>
S011PSimtotalBrasil 2019S011P0.79705060.77290930.82119200.015453529
S011PSim1totalCapital2019S011P0.78560120.73671900.83448340.031746843
S012PSimtotalBrasil 2019S012P0.77094370.74504160.79684580.017142104
S012PSim1totalCapital2019S012P0.76052740.71054320.81051160.033532798
S013PSimtotalBrasil 2019S013P0.84237510.82067830.86407190.013141415
S013PSim1totalCapital2019S013P0.84975000.80988410.88961580.023936576
S014PSimtotalBrasil 2019S014P0.81171460.78810550.83532380.014839855
S014PSim1totalCapital2019S014P0.81894640.77620820.86168460.026626396
S015PSimtotalBrasil 2019S015P0.89970720.88311550.91629880.009408937
S015PSim1totalCapital2019S015P0.88320920.84320950.92320890.023107083
\n" ], "text/latex": [ "A data.frame: 10 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tS011PSim & total & Brasil & 2019 & S011P & 0.7970506 & 0.7729093 & 0.8211920 & 0.015453529\\\\\n", "\tS011PSim1 & total & Capital & 2019 & S011P & 0.7856012 & 0.7367190 & 0.8344834 & 0.031746843\\\\\n", "\tS012PSim & total & Brasil & 2019 & S012P & 0.7709437 & 0.7450416 & 0.7968458 & 0.017142104\\\\\n", "\tS012PSim1 & total & Capital & 2019 & S012P & 0.7605274 & 0.7105432 & 0.8105116 & 0.033532798\\\\\n", "\tS013PSim & total & Brasil & 2019 & S013P & 0.8423751 & 0.8206783 & 0.8640719 & 0.013141415\\\\\n", "\tS013PSim1 & total & Capital & 2019 & S013P & 0.8497500 & 0.8098841 & 0.8896158 & 0.023936576\\\\\n", "\tS014PSim & total & Brasil & 2019 & S014P & 0.8117146 & 0.7881055 & 0.8353238 & 0.014839855\\\\\n", "\tS014PSim1 & total & Capital & 2019 & S014P & 0.8189464 & 0.7762082 & 0.8616846 & 0.026626396\\\\\n", "\tS015PSim & total & Brasil & 2019 & S015P & 0.8997072 & 0.8831155 & 0.9162988 & 0.009408937\\\\\n", "\tS015PSim1 & total & Capital & 2019 & S015P & 0.8832092 & 0.8432095 & 0.9232089 & 0.023107083\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 10 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| S011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |\n", "| S011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |\n", "| S012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |\n", "| S012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |\n", "| S013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |\n", "| S013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |\n", "| S014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |\n", "| S014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |\n", "| S015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |\n", "| S015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n", "S011PSim total Brasil 2019 S011P 0.7970506 0.7729093 0.8211920\n", "S011PSim1 total Capital 2019 S011P 0.7856012 0.7367190 0.8344834\n", "S012PSim total Brasil 2019 S012P 0.7709437 0.7450416 0.7968458\n", "S012PSim1 total Capital 2019 S012P 0.7605274 0.7105432 0.8105116\n", "S013PSim total Brasil 2019 S013P 0.8423751 0.8206783 0.8640719\n", "S013PSim1 total Capital 2019 S013P 0.8497500 0.8098841 0.8896158\n", "S014PSim total Brasil 2019 S014P 0.8117146 0.7881055 0.8353238\n", "S014PSim1 total Capital 2019 S014P 0.8189464 0.7762082 0.8616846\n", "S015PSim total Brasil 2019 S015P 0.8997072 0.8831155 0.9162988\n", "S015PSim1 total Capital 2019 S015P 0.8832092 0.8432095 0.9232089\n", " cvS \n", "S011PSim 0.015453529\n", "S011PSim1 0.031746843\n", "S012PSim 0.017142104\n", "S012PSim1 0.033532798\n", "S013PSim 0.013141415\n", "S013PSim1 0.023936576\n", "S014PSim 0.014839855\n", "S014PSim1 0.026626396\n", "S015PSim 0.009408937\n", "S015PSim1 0.023107083" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_totais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 395 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2019S011P0.78737500.74224210.83250790.02924581
Pretaraça Preta 2019S011P0.77944710.70468300.85421120.04893935
Pardaraça Parda 2019S011P0.81122020.78219220.84024820.01825704
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019S011P0.76748900.73449690.80048100.02193252
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019S011P0.82279270.77725240.86833300.02823954
1 até 2 SMrend_per_capita1 até 2 SM 2019S011P0.85726370.79628340.91824400.03629337
2 até 3 SMrend_per_capita2 até 3 SM 2019S011P0.75064480.61730350.88398610.09063210
Mais de 3 SMrend_per_capitaMais de 3 SM 2019S011P0.76438600.65714950.87162250.07157838
18 a 24 anosfx_idade_S 18 a 24 anos 2019S011P0.76425570.71724690.81126450.03138288
25 a 29 anosfx_idade_S 25 a 29 anos 2019S011P0.78973810.73672380.84275250.03425013
30 a 39 anosfx_idade_S 30 a 39 anos 2019S011P0.82650240.79094340.86206150.02195119
40 anos ou maisfx_idade_S 40 anos ou mais 2019S011P0.78322860.68451720.88194000.06430293
urbanourb_rur urbano 2019S011P0.81232560.78519790.83945320.01703859
ruralurb_rur rural 2019S011P0.71234570.66538050.75931090.03363856
Rondôniauf Rondônia 2019S011P0.81138540.71125330.91151750.06296482
Acreuf Acre 2019S011P0.87151340.77772140.96530540.05490903
Amazonasuf Amazonas 2019S011P0.76757800.66717890.86797700.06673581
Roraimauf Roraima 2019S011P0.80926800.64585600.97268010.10302523
Paráuf Pará 2019S011P0.79776640.71555900.87997380.05257592
Amapáuf Amapá 2019S011P0.87725710.76208050.99243380.06698682
Tocantinsuf Tocantins 2019S011P0.85973430.76469310.95477550.05640264
Maranhãouf Maranhão 2019S011P0.67633980.58839630.76428330.06634235
Piauíuf Piauí 2019S011P0.79185080.68752840.89617310.06721805
Cearáuf Ceará 2019S011P0.73180080.64174930.82185220.06278410
Rio Grande do Norteuf Rio Grande do Norte2019S011P0.80620340.70205600.91035080.06591067
Paraíbauf Paraíba 2019S011P0.63540860.50385230.76696480.10563561
Pernambucouf Pernambuco 2019S011P0.79033540.70194890.87872200.05705934
Alagoasuf Alagoas 2019S011P0.74481660.64217500.84745820.07031143
Sergipeuf Sergipe 2019S011P0.70555170.55244720.85865630.11071620
Bahiauf Bahia 2019S011P0.81092770.69955160.92230390.07007479
João Pessoa4capitalJoão Pessoa 2019S015P0.90588990.81972440.99205550.048529968
Recife4capitalRecife 2019S015P0.94426540.86416291.02436780.043281640
Maceió4capitalMaceió 2019S015P0.93174160.85843341.00504970.040142881
Aracaju4capitalAracaju 2019S015P0.92535800.82006061.03065550.058057736
Salvador4capitalSalvador 2019S015P0.88514830.72796191.04233470.090604712
Belo Horizonte4capitalBelo Horizonte 2019S015P0.78316220.62656650.93975780.102018733
Vitória4capitalVitória 2019S015P0.82957840.63890911.02024770.117266844
Rio de Janeiro9capitalRio de Janeiro 2019S015P0.98303470.95138341.01468600.016427602
São Paulo8capitalSão Paulo 2019S015P0.78181420.61303620.95059220.110144846
Curitiba4capitalCuritiba 2019S015P0.87085500.74787250.99383760.072052572
Florianópolis4capitalFlorianópolis 2019S015P0.76913310.52109581.01717040.164538473
Porto Alegre4capitalPorto Alegre 2019S015P1.00000001.00000001.00000000.000000000
Campo Grande4capitalCampo Grande 2019S015P0.95888500.90414231.01362770.029128061
Cuiabá4capitalCuiabá 2019S015P0.86134710.68848731.03420690.102392414
Goiânia4capitalGoiânia 2019S015P0.91124320.74586441.07662190.092597080
Brasília4capitalBrasília 2019S015P0.83536330.72753340.94319320.065859086
Fundamental incompleto ou equivalente4gescol Fundamental incompleto ou equivalente2019S015P0.84201610.79063700.89339520.031132788
Médio incompleto ou equivalente4gescol Médio incompleto ou equivalente 2019S015P0.89999670.86735290.93264060.018505991
Superior incompleto ou equivalente4gescol Superior incompleto ou equivalente 2019S015P0.91637960.89479650.93796280.012016843
Superior completo4gescol Superior completo 2019S015P0.91547310.87648840.95445780.021727051
S011PSimtotal Brasil 2019S011P0.79705060.77290930.82119200.015453529
S011PSim1total Capital 2019S011P0.78560120.73671900.83448340.031746843
S012PSimtotal Brasil 2019S012P0.77094370.74504160.79684580.017142104
S012PSim1total Capital 2019S012P0.76052740.71054320.81051160.033532798
S013PSimtotal Brasil 2019S013P0.84237510.82067830.86407190.013141415
S013PSim1total Capital 2019S013P0.84975000.80988410.88961580.023936576
S014PSimtotal Brasil 2019S014P0.81171460.78810550.83532380.014839855
S014PSim1total Capital 2019S014P0.81894640.77620820.86168460.026626396
S015PSimtotal Brasil 2019S015P0.89970720.88311550.91629880.009408937
S015PSim1total Capital 2019S015P0.88320920.84320950.92320890.023107083
\n" ], "text/latex": [ "A data.frame: 395 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2019 & S011P & 0.7873750 & 0.7422421 & 0.8325079 & 0.02924581\\\\\n", "\tPreta & raça & Preta & 2019 & S011P & 0.7794471 & 0.7046830 & 0.8542112 & 0.04893935\\\\\n", "\tParda & raça & Parda & 2019 & S011P & 0.8112202 & 0.7821922 & 0.8402482 & 0.01825704\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S011P & 0.7674890 & 0.7344969 & 0.8004810 & 0.02193252\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S011P & 0.8227927 & 0.7772524 & 0.8683330 & 0.02823954\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S011P & 0.8572637 & 0.7962834 & 0.9182440 & 0.03629337\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S011P & 0.7506448 & 0.6173035 & 0.8839861 & 0.09063210\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S011P & 0.7643860 & 0.6571495 & 0.8716225 & 0.07157838\\\\\n", "\t18 a 24 anos & fx\\_idade\\_S & 18 a 24 anos & 2019 & S011P & 0.7642557 & 0.7172469 & 0.8112645 & 0.03138288\\\\\n", "\t25 a 29 anos & fx\\_idade\\_S & 25 a 29 anos & 2019 & S011P & 0.7897381 & 0.7367238 & 0.8427525 & 0.03425013\\\\\n", "\t30 a 39 anos & fx\\_idade\\_S & 30 a 39 anos & 2019 & S011P & 0.8265024 & 0.7909434 & 0.8620615 & 0.02195119\\\\\n", "\t40 anos ou mais & fx\\_idade\\_S & 40 anos ou mais & 2019 & S011P & 0.7832286 & 0.6845172 & 0.8819400 & 0.06430293\\\\\n", "\turbano & urb\\_rur & urbano & 2019 & S011P & 0.8123256 & 0.7851979 & 0.8394532 & 0.01703859\\\\\n", "\trural & urb\\_rur & rural & 2019 & S011P & 0.7123457 & 0.6653805 & 0.7593109 & 0.03363856\\\\\n", "\tRondônia & uf & Rondônia & 2019 & S011P & 0.8113854 & 0.7112533 & 0.9115175 & 0.06296482\\\\\n", "\tAcre & uf & Acre & 2019 & S011P & 0.8715134 & 0.7777214 & 0.9653054 & 0.05490903\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & S011P & 0.7675780 & 0.6671789 & 0.8679770 & 0.06673581\\\\\n", "\tRoraima & uf & Roraima & 2019 & S011P & 0.8092680 & 0.6458560 & 0.9726801 & 0.10302523\\\\\n", "\tPará & uf & Pará & 2019 & S011P & 0.7977664 & 0.7155590 & 0.8799738 & 0.05257592\\\\\n", "\tAmapá & uf & Amapá & 2019 & S011P & 0.8772571 & 0.7620805 & 0.9924338 & 0.06698682\\\\\n", "\tTocantins & uf & Tocantins & 2019 & S011P & 0.8597343 & 0.7646931 & 0.9547755 & 0.05640264\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & S011P & 0.6763398 & 0.5883963 & 0.7642833 & 0.06634235\\\\\n", "\tPiauí & uf & Piauí & 2019 & S011P & 0.7918508 & 0.6875284 & 0.8961731 & 0.06721805\\\\\n", "\tCeará & uf & Ceará & 2019 & S011P & 0.7318008 & 0.6417493 & 0.8218522 & 0.06278410\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S011P & 0.8062034 & 0.7020560 & 0.9103508 & 0.06591067\\\\\n", "\tParaíba & uf & Paraíba & 2019 & S011P & 0.6354086 & 0.5038523 & 0.7669648 & 0.10563561\\\\\n", "\tPernambuco & uf & Pernambuco & 2019 & S011P & 0.7903354 & 0.7019489 & 0.8787220 & 0.05705934\\\\\n", "\tAlagoas & uf & Alagoas & 2019 & S011P & 0.7448166 & 0.6421750 & 0.8474582 & 0.07031143\\\\\n", "\tSergipe & uf & Sergipe & 2019 & S011P & 0.7055517 & 0.5524472 & 0.8586563 & 0.11071620\\\\\n", "\tBahia & uf & Bahia & 2019 & S011P & 0.8109277 & 0.6995516 & 0.9223039 & 0.07007479\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tJoão Pessoa4 & capital & João Pessoa & 2019 & S015P & 0.9058899 & 0.8197244 & 0.9920555 & 0.048529968\\\\\n", "\tRecife4 & capital & Recife & 2019 & S015P & 0.9442654 & 0.8641629 & 1.0243678 & 0.043281640\\\\\n", "\tMaceió4 & capital & Maceió & 2019 & S015P & 0.9317416 & 0.8584334 & 1.0050497 & 0.040142881\\\\\n", "\tAracaju4 & capital & Aracaju & 2019 & S015P & 0.9253580 & 0.8200606 & 1.0306555 & 0.058057736\\\\\n", "\tSalvador4 & capital & Salvador & 2019 & S015P & 0.8851483 & 0.7279619 & 1.0423347 & 0.090604712\\\\\n", "\tBelo Horizonte4 & capital & Belo Horizonte & 2019 & S015P & 0.7831622 & 0.6265665 & 0.9397578 & 0.102018733\\\\\n", "\tVitória4 & capital & Vitória & 2019 & S015P & 0.8295784 & 0.6389091 & 1.0202477 & 0.117266844\\\\\n", "\tRio de Janeiro9 & capital & Rio de Janeiro & 2019 & S015P & 0.9830347 & 0.9513834 & 1.0146860 & 0.016427602\\\\\n", "\tSão Paulo8 & capital & São Paulo & 2019 & S015P & 0.7818142 & 0.6130362 & 0.9505922 & 0.110144846\\\\\n", "\tCuritiba4 & capital & Curitiba & 2019 & S015P & 0.8708550 & 0.7478725 & 0.9938376 & 0.072052572\\\\\n", "\tFlorianópolis4 & capital & Florianópolis & 2019 & S015P & 0.7691331 & 0.5210958 & 1.0171704 & 0.164538473\\\\\n", "\tPorto Alegre4 & capital & Porto Alegre & 2019 & S015P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000000\\\\\n", "\tCampo Grande4 & capital & Campo Grande & 2019 & S015P & 0.9588850 & 0.9041423 & 1.0136277 & 0.029128061\\\\\n", "\tCuiabá4 & capital & Cuiabá & 2019 & S015P & 0.8613471 & 0.6884873 & 1.0342069 & 0.102392414\\\\\n", "\tGoiânia4 & capital & Goiânia & 2019 & S015P & 0.9112432 & 0.7458644 & 1.0766219 & 0.092597080\\\\\n", "\tBrasília4 & capital & Brasília & 2019 & S015P & 0.8353633 & 0.7275334 & 0.9431932 & 0.065859086\\\\\n", "\tFundamental incompleto ou equivalente4 & gescol & Fundamental incompleto ou equivalente & 2019 & S015P & 0.8420161 & 0.7906370 & 0.8933952 & 0.031132788\\\\\n", "\tMédio incompleto ou equivalente4 & gescol & Médio incompleto ou equivalente & 2019 & S015P & 0.8999967 & 0.8673529 & 0.9326406 & 0.018505991\\\\\n", "\tSuperior incompleto ou equivalente4 & gescol & Superior incompleto ou equivalente & 2019 & S015P & 0.9163796 & 0.8947965 & 0.9379628 & 0.012016843\\\\\n", "\tSuperior completo4 & gescol & Superior completo & 2019 & S015P & 0.9154731 & 0.8764884 & 0.9544578 & 0.021727051\\\\\n", "\tS011PSim & total & Brasil & 2019 & S011P & 0.7970506 & 0.7729093 & 0.8211920 & 0.015453529\\\\\n", "\tS011PSim1 & total & Capital & 2019 & S011P & 0.7856012 & 0.7367190 & 0.8344834 & 0.031746843\\\\\n", "\tS012PSim & total & Brasil & 2019 & S012P & 0.7709437 & 0.7450416 & 0.7968458 & 0.017142104\\\\\n", "\tS012PSim1 & total & Capital & 2019 & S012P & 0.7605274 & 0.7105432 & 0.8105116 & 0.033532798\\\\\n", "\tS013PSim & total & Brasil & 2019 & S013P & 0.8423751 & 0.8206783 & 0.8640719 & 0.013141415\\\\\n", "\tS013PSim1 & total & Capital & 2019 & S013P & 0.8497500 & 0.8098841 & 0.8896158 & 0.023936576\\\\\n", "\tS014PSim & total & Brasil & 2019 & S014P & 0.8117146 & 0.7881055 & 0.8353238 & 0.014839855\\\\\n", "\tS014PSim1 & total & Capital & 2019 & S014P & 0.8189464 & 0.7762082 & 0.8616846 & 0.026626396\\\\\n", "\tS015PSim & total & Brasil & 2019 & S015P & 0.8997072 & 0.8831155 & 0.9162988 & 0.009408937\\\\\n", "\tS015PSim1 & total & Capital & 2019 & S015P & 0.8832092 & 0.8432095 & 0.9232089 & 0.023107083\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 395 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2019 | S011P | 0.7873750 | 0.7422421 | 0.8325079 | 0.02924581 |\n", "| Preta | raça | Preta | 2019 | S011P | 0.7794471 | 0.7046830 | 0.8542112 | 0.04893935 |\n", "| Parda | raça | Parda | 2019 | S011P | 0.8112202 | 0.7821922 | 0.8402482 | 0.01825704 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S011P | 0.7674890 | 0.7344969 | 0.8004810 | 0.02193252 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S011P | 0.8227927 | 0.7772524 | 0.8683330 | 0.02823954 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S011P | 0.8572637 | 0.7962834 | 0.9182440 | 0.03629337 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S011P | 0.7506448 | 0.6173035 | 0.8839861 | 0.09063210 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S011P | 0.7643860 | 0.6571495 | 0.8716225 | 0.07157838 |\n", "| 18 a 24 anos | fx_idade_S | 18 a 24 anos | 2019 | S011P | 0.7642557 | 0.7172469 | 0.8112645 | 0.03138288 |\n", "| 25 a 29 anos | fx_idade_S | 25 a 29 anos | 2019 | S011P | 0.7897381 | 0.7367238 | 0.8427525 | 0.03425013 |\n", "| 30 a 39 anos | fx_idade_S | 30 a 39 anos | 2019 | S011P | 0.8265024 | 0.7909434 | 0.8620615 | 0.02195119 |\n", "| 40 anos ou mais | fx_idade_S | 40 anos ou mais | 2019 | S011P | 0.7832286 | 0.6845172 | 0.8819400 | 0.06430293 |\n", "| urbano | urb_rur | urbano | 2019 | S011P | 0.8123256 | 0.7851979 | 0.8394532 | 0.01703859 |\n", "| rural | urb_rur | rural | 2019 | S011P | 0.7123457 | 0.6653805 | 0.7593109 | 0.03363856 |\n", "| Rondônia | uf | Rondônia | 2019 | S011P | 0.8113854 | 0.7112533 | 0.9115175 | 0.06296482 |\n", "| Acre | uf | Acre | 2019 | S011P | 0.8715134 | 0.7777214 | 0.9653054 | 0.05490903 |\n", "| Amazonas | uf | Amazonas | 2019 | S011P | 0.7675780 | 0.6671789 | 0.8679770 | 0.06673581 |\n", "| Roraima | uf | Roraima | 2019 | S011P | 0.8092680 | 0.6458560 | 0.9726801 | 0.10302523 |\n", "| Pará | uf | Pará | 2019 | S011P | 0.7977664 | 0.7155590 | 0.8799738 | 0.05257592 |\n", "| Amapá | uf | Amapá | 2019 | S011P | 0.8772571 | 0.7620805 | 0.9924338 | 0.06698682 |\n", "| Tocantins | uf | Tocantins | 2019 | S011P | 0.8597343 | 0.7646931 | 0.9547755 | 0.05640264 |\n", "| Maranhão | uf | Maranhão | 2019 | S011P | 0.6763398 | 0.5883963 | 0.7642833 | 0.06634235 |\n", "| Piauí | uf | Piauí | 2019 | S011P | 0.7918508 | 0.6875284 | 0.8961731 | 0.06721805 |\n", "| Ceará | uf | Ceará | 2019 | S011P | 0.7318008 | 0.6417493 | 0.8218522 | 0.06278410 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S011P | 0.8062034 | 0.7020560 | 0.9103508 | 0.06591067 |\n", "| Paraíba | uf | Paraíba | 2019 | S011P | 0.6354086 | 0.5038523 | 0.7669648 | 0.10563561 |\n", "| Pernambuco | uf | Pernambuco | 2019 | S011P | 0.7903354 | 0.7019489 | 0.8787220 | 0.05705934 |\n", "| Alagoas | uf | Alagoas | 2019 | S011P | 0.7448166 | 0.6421750 | 0.8474582 | 0.07031143 |\n", "| Sergipe | uf | Sergipe | 2019 | S011P | 0.7055517 | 0.5524472 | 0.8586563 | 0.11071620 |\n", "| Bahia | uf | Bahia | 2019 | S011P | 0.8109277 | 0.6995516 | 0.9223039 | 0.07007479 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| João Pessoa4 | capital | João Pessoa | 2019 | S015P | 0.9058899 | 0.8197244 | 0.9920555 | 0.048529968 |\n", "| Recife4 | capital | Recife | 2019 | S015P | 0.9442654 | 0.8641629 | 1.0243678 | 0.043281640 |\n", "| Maceió4 | capital | Maceió | 2019 | S015P | 0.9317416 | 0.8584334 | 1.0050497 | 0.040142881 |\n", "| Aracaju4 | capital | Aracaju | 2019 | S015P | 0.9253580 | 0.8200606 | 1.0306555 | 0.058057736 |\n", "| Salvador4 | capital | Salvador | 2019 | S015P | 0.8851483 | 0.7279619 | 1.0423347 | 0.090604712 |\n", "| Belo Horizonte4 | capital | Belo Horizonte | 2019 | S015P | 0.7831622 | 0.6265665 | 0.9397578 | 0.102018733 |\n", "| Vitória4 | capital | Vitória | 2019 | S015P | 0.8295784 | 0.6389091 | 1.0202477 | 0.117266844 |\n", "| Rio de Janeiro9 | capital | Rio de Janeiro | 2019 | S015P | 0.9830347 | 0.9513834 | 1.0146860 | 0.016427602 |\n", "| São Paulo8 | capital | São Paulo | 2019 | S015P | 0.7818142 | 0.6130362 | 0.9505922 | 0.110144846 |\n", "| Curitiba4 | capital | Curitiba | 2019 | S015P | 0.8708550 | 0.7478725 | 0.9938376 | 0.072052572 |\n", "| Florianópolis4 | capital | Florianópolis | 2019 | S015P | 0.7691331 | 0.5210958 | 1.0171704 | 0.164538473 |\n", "| Porto Alegre4 | capital | Porto Alegre | 2019 | S015P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000000 |\n", "| Campo Grande4 | capital | Campo Grande | 2019 | S015P | 0.9588850 | 0.9041423 | 1.0136277 | 0.029128061 |\n", "| Cuiabá4 | capital | Cuiabá | 2019 | S015P | 0.8613471 | 0.6884873 | 1.0342069 | 0.102392414 |\n", "| Goiânia4 | capital | Goiânia | 2019 | S015P | 0.9112432 | 0.7458644 | 1.0766219 | 0.092597080 |\n", "| Brasília4 | capital | Brasília | 2019 | S015P | 0.8353633 | 0.7275334 | 0.9431932 | 0.065859086 |\n", "| Fundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2019 | S015P | 0.8420161 | 0.7906370 | 0.8933952 | 0.031132788 |\n", "| Médio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2019 | S015P | 0.8999967 | 0.8673529 | 0.9326406 | 0.018505991 |\n", "| Superior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2019 | S015P | 0.9163796 | 0.8947965 | 0.9379628 | 0.012016843 |\n", "| Superior completo4 | gescol | Superior completo | 2019 | S015P | 0.9154731 | 0.8764884 | 0.9544578 | 0.021727051 |\n", "| S011PSim | total | Brasil | 2019 | S011P | 0.7970506 | 0.7729093 | 0.8211920 | 0.015453529 |\n", "| S011PSim1 | total | Capital | 2019 | S011P | 0.7856012 | 0.7367190 | 0.8344834 | 0.031746843 |\n", "| S012PSim | total | Brasil | 2019 | S012P | 0.7709437 | 0.7450416 | 0.7968458 | 0.017142104 |\n", "| S012PSim1 | total | Capital | 2019 | S012P | 0.7605274 | 0.7105432 | 0.8105116 | 0.033532798 |\n", "| S013PSim | total | Brasil | 2019 | S013P | 0.8423751 | 0.8206783 | 0.8640719 | 0.013141415 |\n", "| S013PSim1 | total | Capital | 2019 | S013P | 0.8497500 | 0.8098841 | 0.8896158 | 0.023936576 |\n", "| S014PSim | total | Brasil | 2019 | S014P | 0.8117146 | 0.7881055 | 0.8353238 | 0.014839855 |\n", "| S014PSim1 | total | Capital | 2019 | S014P | 0.8189464 | 0.7762082 | 0.8616846 | 0.026626396 |\n", "| S015PSim | total | Brasil | 2019 | S015P | 0.8997072 | 0.8831155 | 0.9162988 | 0.009408937 |\n", "| S015PSim1 | total | Capital | 2019 | S015P | 0.8832092 | 0.8432095 | 0.9232089 | 0.023107083 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_S \n", "25 a 29 anos fx_idade_S \n", "30 a 39 anos fx_idade_S \n", "40 anos ou mais fx_idade_S \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "João Pessoa4 capital \n", "Recife4 capital \n", "Maceió4 capital \n", "Aracaju4 capital \n", "Salvador4 capital \n", "Belo Horizonte4 capital \n", "Vitória4 capital \n", "Rio de Janeiro9 capital \n", "São Paulo8 capital \n", "Curitiba4 capital \n", "Florianópolis4 capital \n", "Porto Alegre4 capital \n", "Campo Grande4 capital \n", "Cuiabá4 capital \n", "Goiânia4 capital \n", "Brasília4 capital \n", "Fundamental incompleto ou equivalente4 gescol \n", "Médio incompleto ou equivalente4 gescol \n", "Superior incompleto ou equivalente4 gescol \n", "Superior completo4 gescol \n", "S011PSim total \n", "S011PSim1 total \n", "S012PSim total \n", "S012PSim1 total \n", "S013PSim total \n", "S013PSim1 total \n", "S014PSim total \n", "S014PSim1 total \n", "S015PSim total \n", "S015PSim1 total \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "João Pessoa4 João Pessoa \n", "Recife4 Recife \n", "Maceió4 Maceió \n", "Aracaju4 Aracaju \n", "Salvador4 Salvador \n", "Belo Horizonte4 Belo Horizonte \n", "Vitória4 Vitória \n", "Rio de Janeiro9 Rio de Janeiro \n", "São Paulo8 São Paulo \n", "Curitiba4 Curitiba \n", "Florianópolis4 Florianópolis \n", "Porto Alegre4 Porto Alegre \n", "Campo Grande4 Campo Grande \n", "Cuiabá4 Cuiabá \n", "Goiânia4 Goiânia \n", "Brasília4 Brasília \n", "Fundamental incompleto ou equivalente4 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente4 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente4 Superior incompleto ou equivalente \n", "Superior completo4 Superior completo \n", "S011PSim Brasil \n", "S011PSim1 Capital \n", "S012PSim Brasil \n", "S012PSim1 Capital \n", "S013PSim Brasil \n", "S013PSim1 Capital \n", "S014PSim Brasil \n", "S014PSim1 Capital \n", "S015PSim Brasil \n", "S015PSim1 Capital \n", " Ano Indicador Sim LowerS \n", "Branca 2019 S011P 0.7873750 0.7422421\n", "Preta 2019 S011P 0.7794471 0.7046830\n", "Parda 2019 S011P 0.8112202 0.7821922\n", "Até 1/2 SM 2019 S011P 0.7674890 0.7344969\n", "1/2 até 1 SM 2019 S011P 0.8227927 0.7772524\n", "1 até 2 SM 2019 S011P 0.8572637 0.7962834\n", "2 até 3 SM 2019 S011P 0.7506448 0.6173035\n", "Mais de 3 SM 2019 S011P 0.7643860 0.6571495\n", "18 a 24 anos 2019 S011P 0.7642557 0.7172469\n", "25 a 29 anos 2019 S011P 0.7897381 0.7367238\n", "30 a 39 anos 2019 S011P 0.8265024 0.7909434\n", "40 anos ou mais 2019 S011P 0.7832286 0.6845172\n", "urbano 2019 S011P 0.8123256 0.7851979\n", "rural 2019 S011P 0.7123457 0.6653805\n", "Rondônia 2019 S011P 0.8113854 0.7112533\n", "Acre 2019 S011P 0.8715134 0.7777214\n", "Amazonas 2019 S011P 0.7675780 0.6671789\n", "Roraima 2019 S011P 0.8092680 0.6458560\n", "Pará 2019 S011P 0.7977664 0.7155590\n", "Amapá 2019 S011P 0.8772571 0.7620805\n", "Tocantins 2019 S011P 0.8597343 0.7646931\n", "Maranhão 2019 S011P 0.6763398 0.5883963\n", "Piauí 2019 S011P 0.7918508 0.6875284\n", "Ceará 2019 S011P 0.7318008 0.6417493\n", "Rio Grande do Norte 2019 S011P 0.8062034 0.7020560\n", "Paraíba 2019 S011P 0.6354086 0.5038523\n", "Pernambuco 2019 S011P 0.7903354 0.7019489\n", "Alagoas 2019 S011P 0.7448166 0.6421750\n", "Sergipe 2019 S011P 0.7055517 0.5524472\n", "Bahia 2019 S011P 0.8109277 0.6995516\n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "João Pessoa4 2019 S015P 0.9058899 0.8197244\n", "Recife4 2019 S015P 0.9442654 0.8641629\n", "Maceió4 2019 S015P 0.9317416 0.8584334\n", "Aracaju4 2019 S015P 0.9253580 0.8200606\n", "Salvador4 2019 S015P 0.8851483 0.7279619\n", "Belo Horizonte4 2019 S015P 0.7831622 0.6265665\n", "Vitória4 2019 S015P 0.8295784 0.6389091\n", "Rio de Janeiro9 2019 S015P 0.9830347 0.9513834\n", "São Paulo8 2019 S015P 0.7818142 0.6130362\n", "Curitiba4 2019 S015P 0.8708550 0.7478725\n", "Florianópolis4 2019 S015P 0.7691331 0.5210958\n", "Porto Alegre4 2019 S015P 1.0000000 1.0000000\n", "Campo Grande4 2019 S015P 0.9588850 0.9041423\n", "Cuiabá4 2019 S015P 0.8613471 0.6884873\n", "Goiânia4 2019 S015P 0.9112432 0.7458644\n", "Brasília4 2019 S015P 0.8353633 0.7275334\n", "Fundamental incompleto ou equivalente4 2019 S015P 0.8420161 0.7906370\n", "Médio incompleto ou equivalente4 2019 S015P 0.8999967 0.8673529\n", "Superior incompleto ou equivalente4 2019 S015P 0.9163796 0.8947965\n", "Superior completo4 2019 S015P 0.9154731 0.8764884\n", "S011PSim 2019 S011P 0.7970506 0.7729093\n", "S011PSim1 2019 S011P 0.7856012 0.7367190\n", "S012PSim 2019 S012P 0.7709437 0.7450416\n", "S012PSim1 2019 S012P 0.7605274 0.7105432\n", "S013PSim 2019 S013P 0.8423751 0.8206783\n", "S013PSim1 2019 S013P 0.8497500 0.8098841\n", "S014PSim 2019 S014P 0.8117146 0.7881055\n", "S014PSim1 2019 S014P 0.8189464 0.7762082\n", "S015PSim 2019 S015P 0.8997072 0.8831155\n", "S015PSim1 2019 S015P 0.8832092 0.8432095\n", " UpperS cvS \n", "Branca 0.8325079 0.02924581 \n", "Preta 0.8542112 0.04893935 \n", "Parda 0.8402482 0.01825704 \n", "Até 1/2 SM 0.8004810 0.02193252 \n", "1/2 até 1 SM 0.8683330 0.02823954 \n", "1 até 2 SM 0.9182440 0.03629337 \n", "2 até 3 SM 0.8839861 0.09063210 \n", "Mais de 3 SM 0.8716225 0.07157838 \n", "18 a 24 anos 0.8112645 0.03138288 \n", "25 a 29 anos 0.8427525 0.03425013 \n", "30 a 39 anos 0.8620615 0.02195119 \n", "40 anos ou mais 0.8819400 0.06430293 \n", "urbano 0.8394532 0.01703859 \n", "rural 0.7593109 0.03363856 \n", "Rondônia 0.9115175 0.06296482 \n", "Acre 0.9653054 0.05490903 \n", "Amazonas 0.8679770 0.06673581 \n", "Roraima 0.9726801 0.10302523 \n", "Pará 0.8799738 0.05257592 \n", "Amapá 0.9924338 0.06698682 \n", "Tocantins 0.9547755 0.05640264 \n", "Maranhão 0.7642833 0.06634235 \n", "Piauí 0.8961731 0.06721805 \n", "Ceará 0.8218522 0.06278410 \n", "Rio Grande do Norte 0.9103508 0.06591067 \n", "Paraíba 0.7669648 0.10563561 \n", "Pernambuco 0.8787220 0.05705934 \n", "Alagoas 0.8474582 0.07031143 \n", "Sergipe 0.8586563 0.11071620 \n", "Bahia 0.9223039 0.07007479 \n", "⋮ ⋮ ⋮ \n", "João Pessoa4 0.9920555 0.048529968\n", "Recife4 1.0243678 0.043281640\n", "Maceió4 1.0050497 0.040142881\n", "Aracaju4 1.0306555 0.058057736\n", "Salvador4 1.0423347 0.090604712\n", "Belo Horizonte4 0.9397578 0.102018733\n", "Vitória4 1.0202477 0.117266844\n", "Rio de Janeiro9 1.0146860 0.016427602\n", "São Paulo8 0.9505922 0.110144846\n", "Curitiba4 0.9938376 0.072052572\n", "Florianópolis4 1.0171704 0.164538473\n", "Porto Alegre4 1.0000000 0.000000000\n", "Campo Grande4 1.0136277 0.029128061\n", "Cuiabá4 1.0342069 0.102392414\n", "Goiânia4 1.0766219 0.092597080\n", "Brasília4 0.9431932 0.065859086\n", "Fundamental incompleto ou equivalente4 0.8933952 0.031132788\n", "Médio incompleto ou equivalente4 0.9326406 0.018505991\n", "Superior incompleto ou equivalente4 0.9379628 0.012016843\n", "Superior completo4 0.9544578 0.021727051\n", "S011PSim 0.8211920 0.015453529\n", "S011PSim1 0.8344834 0.031746843\n", "S012PSim 0.7968458 0.017142104\n", "S012PSim1 0.8105116 0.033532798\n", "S013PSim 0.8640719 0.013141415\n", "S013PSim1 0.8896158 0.023936576\n", "S014PSim 0.8353238 0.014839855\n", "S014PSim1 0.8616846 0.026626396\n", "S015PSim 0.9162988 0.009408937\n", "S015PSim1 0.9232089 0.023107083" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo S 2019" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 4 }