{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - S 2019 Pré-natal - Parte 2" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(tictoc)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 293726
  2. 1087
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 293726\n", "\\item 1087\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 293726\n", "2. 1087\n", "\n", "\n" ], "text/plain": [ "[1] 293726 1087" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.00562 0.26621 0.54401 1.00000 1.12765 61.09981 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos e calculando peso amostral - summary de verificação\n", "pns2019.1<- %>% filter(V0025A==1) \n", "pns2019.1<-pns2019.1 %>% mutate(peso_morador_selec=((V00291*(90846/168426190))))\n", "pns2019.1<-pns2019.1 %>% filter(!is.na(peso_morador_selec))\n", "summary(pns2019.1$peso_morador_selec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
2561
Não
173
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2561\n", "\\item[Não] 173\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2561Não\n", ": 173NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2561 173 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2585
Não
149
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2585\n", "\\item[Não] 149\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2585Não\n", ": 149NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2585 149 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2663
Não
71
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2663\n", "\\item[Não] 71\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2663Não\n", ": 71NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2663 71 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2208
Não
526
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2208\n", "\\item[Não] 526\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2208Não\n", ": 526NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2208 526 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
833
Não
1901
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 833\n", "\\item[Não] 1901\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 833Não\n", ": 1901NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 833 1901 88112 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Desfechos - Indicadores\n", "# 6. Proporção de mulheres que tiveram a pressão arterial medida em todas as consultas - S006P.\n", "pns2019.1$S006P <- NA\n", "pns2019.1$S006P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S006P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S07901==1] <- 1\n", "pns2019.1$S006P<-factor(pns2019.1$S006P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S006P)\n", "\n", "# 7. Proporção de mulheres que realizaram pré-natal e que tiveram o peso medido em todas as consultas - S007P.\n", "pns2019.1$S007P <- NA\n", "pns2019.1$S007P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S007P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S07902==1] <- 1\n", "pns2019.1$S007P<-factor(pns2019.1$S007P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S007P)\n", "\n", "# 8. Proporção de mulheres que tiveram a barriga medida em algumas/todas as consultas - S008P.\n", "pns2019.1$S008P <- NA\n", "pns2019.1$S008P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S008P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & (pns2019.1$S07903==1 | pns2019.1$S07903==2)] <- 1\n", "pns2019.1$S008P<-factor(pns2019.1$S008P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S008P)\n", "\n", "# 9. Proporção de mulheres que tiveram o coração do bebê ouvido em todas consultas - S009P.\n", "pns2019.1$S009P <- NA\n", "pns2019.1$S009P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S009P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & (pns2019.1$S07904==1)] <- 1\n", "pns2019.1$S009P<-factor(pns2019.1$S009P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S009P)\n", "\n", "# 10. Proporção de mulheres que tiveram exame das mamas em algumas/todas consultas - S010P.\n", "pns2019.1$S010P <- NA\n", "pns2019.1$S010P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 ] <- 2\n", "pns2019.1$S010P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & (pns2019.1$S07905==1 | pns2019.1$S07905==2)] <- 1\n", "pns2019.1$S010P<-factor(pns2019.1$S010P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S010P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
urbano
69873
rural
20973
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[urbano] 69873\n", "\\item[rural] 20973\n", "\\end{description*}\n" ], "text/markdown": [ "urbano\n", ": 69873rural\n", ": 20973\n", "\n" ], "text/plain": [ "urbano rural \n", " 69873 20973 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2019.1 <- pns2019.1 %>% rename(Sit_Urbano_Rural=V0026)\n", "pns2019.1$Sit_Urbano_Rural<-factor(pns2019.1$Sit_Urbano_Rural, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n", "summary(pns2019.1$Sit_Urbano_Rural)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
2176
Acre
2380
Amazonas
3479
Roraima
2238
Pará
3853
Amapá
1554
Tocantins
1922
Maranhão
5080
Piauí
2740
Ceará
4265
Rio Grande do Norte
2962
Paraíba
3158
Pernambuco
4083
Alagoas
2987
Sergipe
2610
Bahia
3659
Minas Gerais
5209
Espírito Santo
3541
Rio de Janeiro
4966
São Paulo
6114
Paraná
3967
Santa Catarina
3738
Rio Grande do Sul
3767
Mato Grosso do Sul
2863
Mato Grosso
2468
Goiás
2702
Distrito Federal
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 2176\n", "\\item[Acre] 2380\n", "\\item[Amazonas] 3479\n", "\\item[Roraima] 2238\n", "\\item[Pará] 3853\n", "\\item[Amapá] 1554\n", "\\item[Tocantins] 1922\n", "\\item[Maranhão] 5080\n", "\\item[Piauí] 2740\n", "\\item[Ceará] 4265\n", "\\item[Rio Grande do Norte] 2962\n", "\\item[Paraíba] 3158\n", "\\item[Pernambuco] 4083\n", "\\item[Alagoas] 2987\n", "\\item[Sergipe] 2610\n", "\\item[Bahia] 3659\n", "\\item[Minas Gerais] 5209\n", "\\item[Espírito Santo] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Paraná] 3967\n", "\\item[Santa Catarina] 3738\n", "\\item[Rio Grande do Sul] 3767\n", "\\item[Mato Grosso do Sul] 2863\n", "\\item[Mato Grosso] 2468\n", "\\item[Goiás] 2702\n", "\\item[Distrito Federal] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 2176Acre\n", ": 2380Amazonas\n", ": 3479Roraima\n", ": 2238Pará\n", ": 3853Amapá\n", ": 1554Tocantins\n", ": 1922Maranhão\n", ": 5080Piauí\n", ": 2740Ceará\n", ": 4265Rio Grande do Norte\n", ": 2962Paraíba\n", ": 3158Pernambuco\n", ": 4083Alagoas\n", ": 2987Sergipe\n", ": 2610Bahia\n", ": 3659Minas Gerais\n", ": 5209Espírito Santo\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Paraná\n", ": 3967Santa Catarina\n", ": 3738Rio Grande do Sul\n", ": 3767Mato Grosso do Sul\n", ": 2863Mato Grosso\n", ": 2468Goiás\n", ": 2702Distrito Federal\n", ": 2365\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 2176 2380 3479 2238 \n", " Pará Amapá Tocantins Maranhão \n", " 3853 1554 1922 5080 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 2740 4265 2962 3158 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 4083 2987 2610 3659 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 5209 3541 4966 6114 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 3967 3738 3767 2863 \n", " Mato Grosso Goiás Distrito Federal \n", " 2468 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2019.1 <- pns2019.1 %>% rename(Unidades_da_Federacao=V0001)\n", "pns2019.1$Unidades_da_Federacao<-factor(pns2019.1$Unidades_da_Federacao, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2019.1$Unidades_da_Federacao)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
17602
Nordeste
31544
Sudeste
19830
Sul
11472
Centro-Oeste
10398
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 17602\n", "\\item[Nordeste] 31544\n", "\\item[Sudeste] 19830\n", "\\item[Sul] 11472\n", "\\item[Centro-Oeste] 10398\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 17602Nordeste\n", ": 31544Sudeste\n", ": 19830Sul\n", ": 11472Centro-Oeste\n", ": 10398\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 17602 31544 19830 11472 10398 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2019.1 <- pns2019.1 %>% \n", " mutate(GrandesRegioes = fct_collapse(Unidades_da_Federacao, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n", "summary(pns2019.1$GrandesRegioes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
2176
Rio Branco
2380
Manaus
3479
Boa Vista
2238
Belém
3853
Macapá
1554
Palmas
1922
São Luís
5080
Teresina
2740
Fortaleza
4265
Natal
2962
João Pessoa
3158
Recife
4083
Maceió
2987
Aracaju
2610
Salvador
3659
Belo Horizonte
5209
Vitória
3541
Rio de Janeiro
4966
São Paulo
6114
Curitiba
3967
Florianópolis
3738
Porto Alegre
3767
Campo Grande
2863
Cuiabá
2468
Goiânia
2702
Brasília
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 2176\n", "\\item[Rio Branco] 2380\n", "\\item[Manaus] 3479\n", "\\item[Boa Vista] 2238\n", "\\item[Belém] 3853\n", "\\item[Macapá] 1554\n", "\\item[Palmas] 1922\n", "\\item[São Luís] 5080\n", "\\item[Teresina] 2740\n", "\\item[Fortaleza] 4265\n", "\\item[Natal] 2962\n", "\\item[João Pessoa] 3158\n", "\\item[Recife] 4083\n", "\\item[Maceió] 2987\n", "\\item[Aracaju] 2610\n", "\\item[Salvador] 3659\n", "\\item[Belo Horizonte] 5209\n", "\\item[Vitória] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Curitiba] 3967\n", "\\item[Florianópolis] 3738\n", "\\item[Porto Alegre] 3767\n", "\\item[Campo Grande] 2863\n", "\\item[Cuiabá] 2468\n", "\\item[Goiânia] 2702\n", "\\item[Brasília] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 2176Rio Branco\n", ": 2380Manaus\n", ": 3479Boa Vista\n", ": 2238Belém\n", ": 3853Macapá\n", ": 1554Palmas\n", ": 1922São Luís\n", ": 5080Teresina\n", ": 2740Fortaleza\n", ": 4265Natal\n", ": 2962João Pessoa\n", ": 3158Recife\n", ": 4083Maceió\n", ": 2987Aracaju\n", ": 2610Salvador\n", ": 3659Belo Horizonte\n", ": 5209Vitória\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Curitiba\n", ": 3967Florianópolis\n", ": 3738Porto Alegre\n", ": 3767Campo Grande\n", ": 2863Cuiabá\n", ": 2468Goiânia\n", ": 2702Brasília\n", ": 2365\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 2176 2380 3479 2238 3853 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 1554 1922 5080 2740 4265 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 2962 3158 4083 2987 2610 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 3659 5209 3541 4966 6114 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 3967 3738 3767 2863 2468 \n", " Goiânia Brasília \n", " 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2019.1<- pns2019.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federacao,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2019.1$Capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
18 a 24 anos
8145
25 a 29 anos
7249
30 a 39 anos
18150
40 anos ou mais
54987
NA's
2315
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[18 a 24 anos] 8145\n", "\\item[25 a 29 anos] 7249\n", "\\item[30 a 39 anos] 18150\n", "\\item[40 anos ou mais] 54987\n", "\\item[NA's] 2315\n", "\\end{description*}\n" ], "text/markdown": [ "18 a 24 anos\n", ": 814525 a 29 anos\n", ": 724930 a 39 anos\n", ": 1815040 anos ou mais\n", ": 54987NA's\n", ": 2315\n", "\n" ], "text/plain": [ " 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais NA's \n", " 8145 7249 18150 54987 2315 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Faixas Etárias\n", "\n", "pns2019.1 <- pns2019.1 %>% mutate(fx_idade_S=cut(C008,\n", " breaks = c(18,25,30,40,120),\n", " labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n", " ordered_result = TRUE, right = FALSE))\n", "summary(pns2019.1$fx_idade_S)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
33133
Preta
10345
Parda
45994
NA's
1374
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 33133\n", "\\item[Preta] 10345\n", "\\item[Parda] 45994\n", "\\item[NA's] 1374\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 33133Preta\n", ": 10345Parda\n", ": 45994NA's\n", ": 1374\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 33133 10345 45994 1374 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Raça\n", "pns2019.1 <- pns2019.1 %>% mutate(Raca= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "\n", "pns2019.1$Raca<-factor(pns2019.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "\n", "summary(pns2019.1$Raca)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
23697
1/2 até 1 SM
26406
1 até 2 SM
22466
2 até 3 SM
7612
Mais de 3 SM
10643
NA's
22
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 23697\n", "\\item[1/2 até 1 SM] 26406\n", "\\item[1 até 2 SM] 22466\n", "\\item[2 até 3 SM] 7612\n", "\\item[Mais de 3 SM] 10643\n", "\\item[NA's] 22\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 236971/2 até 1 SM\n", ": 264061 até 2 SM\n", ": 224662 até 3 SM\n", ": 7612Mais de 3 SM\n", ": 10643NA's\n", ": 22\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 23697 26406 22466 7612 10643 22 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rendimento domiciliar per capita\n", "pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n", " ifelse(VDF004%in% 3, 2, \n", " ifelse(VDF004%in% 4, 3,\n", " ifelse(VDF004%in% 5, 4, \n", " ifelse(is.na(VDF004)==TRUE, NA_real_, 5))))))\n", "\n", "pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n", " \"2 até 3 SM\",\"Mais de 3 SM\"))\n", "summary(pns2019.1$rend_per_capita)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Escolaridade" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Fundamental incompleto ou equivalente
36276
Médio incompleto ou equivalente
13520
Superior incompleto ou equivalente
27433
Superior completo
13617
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Fundamental incompleto ou equivalente] 36276\n", "\\item[Médio incompleto ou equivalente] 13520\n", "\\item[Superior incompleto ou equivalente] 27433\n", "\\item[Superior completo] 13617\n", "\\end{description*}\n" ], "text/markdown": [ "Fundamental incompleto ou equivalente\n", ": 36276Médio incompleto ou equivalente\n", ": 13520Superior incompleto ou equivalente\n", ": 27433Superior completo\n", ": 13617\n", "\n" ], "text/plain": [ "Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n", " 36276 13520 \n", " Superior incompleto ou equivalente Superior completo \n", " 27433 13617 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Escolaridade\n", "pns2019.1 <- pns2019.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n", " ifelse(VDD004A%in% 3:4, 2, \n", " ifelse(VDD004A%in% 5:6, 3,4\n", " ))))\n", "\n", "pns2019.1$gescol<-factor(pns2019.1$gescol, levels=c(1,2,3,4), \n", " labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n", " \"Superior incompleto ou equivalente\",\"Superior completo\"))\n", "summary(pns2019.1$gescol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec C008 \n", " 1210010: 1167 140001681: 18 Min. : 0.00562 Min. : 15.00 \n", " 1410011: 792 140003815: 18 1st Qu.: 0.26621 1st Qu.: 32.00 \n", " 2710111: 779 140005777: 18 Median : 0.54401 Median : 45.00 \n", " 2410011: 745 140006746: 18 Mean : 1.00000 Mean : 46.39 \n", " 5010011: 738 140007081: 18 3rd Qu.: 1.12765 3rd Qu.: 60.00 \n", " 3210011: 711 140007715: 18 Max. :61.09981 Max. :107.00 \n", " (Other):85914 (Other) :90738 \n", " C006 C009 V0031 Sit_Urbano_Rural\n", " Min. :1.000 Min. :1.000 Min. :1.000 urbano:69873 \n", " 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:1.000 rural :20973 \n", " Median :2.000 Median :4.000 Median :2.000 \n", " Mean :1.529 Mean :2.679 Mean :2.605 \n", " 3rd Qu.:2.000 3rd Qu.:4.000 3rd Qu.:4.000 \n", " Max. :2.000 Max. :9.000 Max. :4.000 \n", " \n", " Unidades_da_Federacao GrandesRegioes Capital \n", " São Paulo : 6114 Norte :17602 São Paulo : 6114 \n", " Minas Gerais : 5209 Nordeste :31544 Belo Horizonte: 5209 \n", " Maranhão : 5080 Sudeste :19830 São Luís : 5080 \n", " Rio de Janeiro: 4966 Sul :11472 Rio de Janeiro: 4966 \n", " Ceará : 4265 Centro-Oeste:10398 Fortaleza : 4265 \n", " Pernambuco : 4083 Recife : 4083 \n", " (Other) :61129 (Other) :61129 \n", " fx_idade_S Raca rend_per_capita \n", " 18 a 24 anos : 8145 Branca:33133 Até 1/2 SM :23697 \n", " 25 a 29 anos : 7249 Preta :10345 1/2 até 1 SM:26406 \n", " 30 a 39 anos :18150 Parda :45994 1 até 2 SM :22466 \n", " 40 anos ou mais:54987 NA's : 1374 2 até 3 SM : 7612 \n", " NA's : 2315 Mais de 3 SM:10643 \n", " NA's : 22 \n", " \n", " gescol S006P S007P \n", " Fundamental incompleto ou equivalente:36276 Sim : 2561 Sim : 2585 \n", " Médio incompleto ou equivalente :13520 Não : 173 Não : 149 \n", " Superior incompleto ou equivalente :27433 NA's:88112 NA's:88112 \n", " Superior completo :13617 \n", " \n", " \n", " \n", " S008P S009P S010P S068 \n", " Sim : 2663 Sim : 2208 Sim : 833 Min. :1.00 \n", " Não : 71 Não : 526 Não : 1901 1st Qu.:1.00 \n", " NA's:88112 NA's:88112 NA's:88112 Median :1.00 \n", " Mean :1.03 \n", " 3rd Qu.:1.00 \n", " Max. :2.00 \n", " NA's :87936 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando variáveis para cálculo de indicadores no survey\n", "pns2019Ssurvey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"C008\", \"C006\", \"C009\", \"V0031\", \n", " \"Sit_Urbano_Rural\", \"Unidades_da_Federacao\", \"GrandesRegioes\", \"Capital\", \"fx_idade_S\", \"Raca\", \"rend_per_capita\", \"gescol\",\n", " \"S006P\", \"S007P\", \"S008P\", \"S009P\", \"S010P\", \"S068\") \n", "summary(pns2019Ssurvey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo S 2019 - Parte2 " ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "#Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2019Ssurvey, file.path(diretorio_saida, \"pns2019Ssurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "desPNS=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_morador_selec, nest=TRUE, \n", " data=pns2019Ssurvey)" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "#survey design S006P a S010P\n", "desPNSS006P=subset(desPNS, C006==2 & C008>=18 & S068==1)\n", "desPNSS006P_C=subset(desPNS, C006==2 & C008>=18 & S068==1 & V0031==1)\n", "desPNSS006P_R=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(Raca))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Criação da tabela de indicadores\n", "Essa tabela é responsável por unir os indicadores no formato do painel de indicadores" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores = data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "ListaIndicadores = c(~S006P, ~S007P, ~S008P, ~S009P, ~S010P)\n", "ListaIndicadoresTexto = c(\"S006P\", \"S007P\", \"S008P\", \"S009P\", \"S010P\" )\n", "ListaTotais = c('Brasil','Capital')\n", "Ano <- \"2019\"" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "ListaDominiosS001 = c(~Raca,~rend_per_capita,~fx_idade_S,~Sit_Urbano_Rural,\n", " ~Unidades_da_Federacao,~GrandesRegioes,~Capital,~gescol)\n", "ListaDominiosTextoS001= c(\"raça\",\"rend_per_capita\",\"fx_idade_S\",\"urb_rur\",\n", " \"uf\",\"região\",\"capital\",\"gescol\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores\n", "Essas iterações rodam por indicador, abrangência e por design" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "#Cálculo dos indicadores usando o pacote survey \n", "i <- 0\n", "#Para cada indicador\n", "for( indicador in ListaIndicadores){\n", " i <- i + 1; j <- 1\n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\" | ListaIndicadoresTexto[i]== \"S009P\" | ListaIndicadoresTexto[i]== \"S010P\"){\n", " ListaDominios<-ListaDominiosS001\n", " ListaDominiosTexto<-ListaDominiosTextoS001\n", " } else {\n", " ListaDominios<-ListaDominiosS001\n", "ListaDominiosTexto<-ListaDominiosTextoS001\n", " }\n", " #Para cada dominio\n", " for (dominio in ListaDominios){\n", "#design especifico para capital que é subconjunto do dataframe total\n", " if (ListaDominiosTexto[j]==\"capital\"){\n", "#designs especificos por variavel que são subconjuntos do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\"| ListaIndicadoresTexto[i]== \"S009P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P_C , svymean,vartype= c(\"ci\",\"cv\")) \n", " } else if (ListaIndicadoresTexto[i]== \"S010P\") {\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P_C, svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " } else if (ListaDominiosTexto[j]==\"raça\"){\n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\" | ListaIndicadoresTexto[i]== \"S009P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S010P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #design geral para o subconjunto maior que 15 anos\n", " } else { \n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\" | ListaIndicadoresTexto[i]== \"S009P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S010P\")\n", " {\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS006P , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " }\n", "#União do dataframe de indicadores no formato do painel disponibilizado para PNS\n", "dataframe_indicador<-data.frame(dataframe_indicador)\n", " colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Nao\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n", " dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n", " dataframe_indicador$Ano <- Ano\n", " dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n", " matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n", " j <- j + 1\n", " }\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando a tabela pela abrangência total" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "i = 0\n", "#para cada indicador\n", "for(indicador in ListaIndicadores){\n", " i <- i + 1\n", " #para os totais Brasil e total das capitais\n", " for(total in ListaTotais){\n", " dataframe_indicador <- data.frame()\n", " dataframe_indicador_S <- data.frame()\n", " #Uso do design que é subconjunto do dataset para cada Capital\n", " if (total == \"Capital\"){\n", " #Indicadores que são subconjunto do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\"| ListaIndicadoresTexto[i]== \"S009P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS006P_C)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S010P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS006P_C)\n", " }\n", " } else {\n", " if (ListaIndicadoresTexto[i]== \"S006P\" | ListaIndicadoresTexto[i]== \"S007P\" | ListaIndicadoresTexto[i]== \"S008P\"| ListaIndicadoresTexto[i]== \"S009P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS006P)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S010P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS006P)\n", " }\n", " }\n", " intervalo_confianca <- confint(dataframe_indicador)\n", " coeficiente_variacao <- cv(dataframe_indicador)\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n", " \n", " dataframe_indicador <- dataframe_indicador %>% \n", " select('mean','X2.5..','X97.5..',coeficiente_variacao) \n", " dataframe_indicador_S <- dataframe_indicador %>% \n", " slice(1)\n", " \n", " colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n", " dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n", " \n", " dataframe_indicador_S$abr_tipo <- \"total\"\n", " dataframe_indicador_S$abr_nome <- total\n", " dataframe_indicador_S$Ano <- Ano \n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n", " \n", " matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 10 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><chr><chr><chr><dbl><dbl><dbl><dbl>
S006PSimtotalBrasil 2019S006P0.94770600.93580790.95960410.006405528
S006PSim1totalCapital2019S006P0.94478230.92598690.96357780.010150173
S007PSimtotalBrasil 2019S007P0.95321790.94140900.96502680.006320746
S007PSim1totalCapital2019S007P0.95369650.93468910.97270390.010168667
S008PSimtotalBrasil 2019S008P0.97065130.95882800.98247450.006214775
S008PSim1totalCapital2019S008P0.97798540.96535680.99061390.006588311
S009PSimtotalBrasil 2019S009P0.81433800.79161830.83705770.014234744
S009PSim1totalCapital2019S009P0.81672670.78047700.85297640.022645383
S010PSimtotalBrasil 2019S010P0.36257180.32970280.39544090.046253562
S010PSim1totalCapital2019S010P0.43091470.37711720.48471210.063697480
\n" ], "text/latex": [ "A data.frame: 10 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tS006PSim & total & Brasil & 2019 & S006P & 0.9477060 & 0.9358079 & 0.9596041 & 0.006405528\\\\\n", "\tS006PSim1 & total & Capital & 2019 & S006P & 0.9447823 & 0.9259869 & 0.9635778 & 0.010150173\\\\\n", "\tS007PSim & total & Brasil & 2019 & S007P & 0.9532179 & 0.9414090 & 0.9650268 & 0.006320746\\\\\n", "\tS007PSim1 & total & Capital & 2019 & S007P & 0.9536965 & 0.9346891 & 0.9727039 & 0.010168667\\\\\n", "\tS008PSim & total & Brasil & 2019 & S008P & 0.9706513 & 0.9588280 & 0.9824745 & 0.006214775\\\\\n", "\tS008PSim1 & total & Capital & 2019 & S008P & 0.9779854 & 0.9653568 & 0.9906139 & 0.006588311\\\\\n", "\tS009PSim & total & Brasil & 2019 & S009P & 0.8143380 & 0.7916183 & 0.8370577 & 0.014234744\\\\\n", "\tS009PSim1 & total & Capital & 2019 & S009P & 0.8167267 & 0.7804770 & 0.8529764 & 0.022645383\\\\\n", "\tS010PSim & total & Brasil & 2019 & S010P & 0.3625718 & 0.3297028 & 0.3954409 & 0.046253562\\\\\n", "\tS010PSim1 & total & Capital & 2019 & S010P & 0.4309147 & 0.3771172 & 0.4847121 & 0.063697480\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 10 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| S006PSim | total | Brasil | 2019 | S006P | 0.9477060 | 0.9358079 | 0.9596041 | 0.006405528 |\n", "| S006PSim1 | total | Capital | 2019 | S006P | 0.9447823 | 0.9259869 | 0.9635778 | 0.010150173 |\n", "| S007PSim | total | Brasil | 2019 | S007P | 0.9532179 | 0.9414090 | 0.9650268 | 0.006320746 |\n", "| S007PSim1 | total | Capital | 2019 | S007P | 0.9536965 | 0.9346891 | 0.9727039 | 0.010168667 |\n", "| S008PSim | total | Brasil | 2019 | S008P | 0.9706513 | 0.9588280 | 0.9824745 | 0.006214775 |\n", "| S008PSim1 | total | Capital | 2019 | S008P | 0.9779854 | 0.9653568 | 0.9906139 | 0.006588311 |\n", "| S009PSim | total | Brasil | 2019 | S009P | 0.8143380 | 0.7916183 | 0.8370577 | 0.014234744 |\n", "| S009PSim1 | total | Capital | 2019 | S009P | 0.8167267 | 0.7804770 | 0.8529764 | 0.022645383 |\n", "| S010PSim | total | Brasil | 2019 | S010P | 0.3625718 | 0.3297028 | 0.3954409 | 0.046253562 |\n", "| S010PSim1 | total | Capital | 2019 | S010P | 0.4309147 | 0.3771172 | 0.4847121 | 0.063697480 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n", "S006PSim total Brasil 2019 S006P 0.9477060 0.9358079 0.9596041\n", "S006PSim1 total Capital 2019 S006P 0.9447823 0.9259869 0.9635778\n", "S007PSim total Brasil 2019 S007P 0.9532179 0.9414090 0.9650268\n", "S007PSim1 total Capital 2019 S007P 0.9536965 0.9346891 0.9727039\n", "S008PSim total Brasil 2019 S008P 0.9706513 0.9588280 0.9824745\n", "S008PSim1 total Capital 2019 S008P 0.9779854 0.9653568 0.9906139\n", "S009PSim total Brasil 2019 S009P 0.8143380 0.7916183 0.8370577\n", "S009PSim1 total Capital 2019 S009P 0.8167267 0.7804770 0.8529764\n", "S010PSim total Brasil 2019 S010P 0.3625718 0.3297028 0.3954409\n", "S010PSim1 total Capital 2019 S010P 0.4309147 0.3771172 0.4847121\n", " cvS \n", "S006PSim 0.006405528\n", "S006PSim1 0.010150173\n", "S007PSim 0.006320746\n", "S007PSim1 0.010168667\n", "S008PSim 0.006214775\n", "S008PSim1 0.006588311\n", "S009PSim 0.014234744\n", "S009PSim1 0.022645383\n", "S010PSim 0.046253562\n", "S010PSim1 0.063697480" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_totais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 395 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2019S006P0.96627390.95190880.98063900.007585076
Pretaraça Preta 2019S006P0.97331100.94286961.00375240.015957505
Pardaraça Parda 2019S006P0.92891650.91014130.94769180.010312412
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019S006P0.92942110.90951240.94932980.010929053
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019S006P0.95682210.93603140.97761270.011086351
1 até 2 SMrend_per_capita1 até 2 SM 2019S006P0.96650890.94486900.98814890.011423580
2 até 3 SMrend_per_capita2 até 3 SM 2019S006P0.97464470.93950431.00978510.018395535
Mais de 3 SMrend_per_capitaMais de 3 SM 2019S006P0.96826550.93287961.00365150.018646104
18 a 24 anosfx_idade_S 18 a 24 anos 2019S006P0.93775670.91141950.96409400.014329515
25 a 29 anosfx_idade_S 25 a 29 anos 2019S006P0.94819780.92712670.96926890.011338103
30 a 39 anosfx_idade_S 30 a 39 anos 2019S006P0.95711610.94136780.97286430.008394974
40 anos ou maisfx_idade_S 40 anos ou mais 2019S006P0.92950200.86493020.99407380.035444158
urbanourb_rur urbano 2019S006P0.95232450.93935600.96529290.006947935
ruralurb_rur rural 2019S006P0.92209500.89266380.95152610.016284855
Rondôniauf Rondônia 2019S006P0.94501740.88460231.00543250.032618027
Acreuf Acre 2019S006P0.92465940.84728361.00203520.042694832
Amazonasuf Amazonas 2019S006P0.92555400.86785410.98325390.031807182
Roraimauf Roraima 2019S006P0.92004230.85823980.98184490.034272864
Paráuf Pará 2019S006P0.78828250.68222140.89434370.068647762
Amapáuf Amapá 2019S006P0.90514000.80864821.00163170.054390920
Tocantinsuf Tocantins 2019S006P0.93564630.86170411.00958860.040321142
Maranhãouf Maranhão 2019S006P0.91597780.87367600.95827950.023562721
Piauíuf Piauí 2019S006P0.86270190.68690811.03849570.103966825
Cearáuf Ceará 2019S006P0.97618450.94835331.00401560.014546244
Rio Grande do Norteuf Rio Grande do Norte2019S006P0.96565000.92853011.00276990.019612787
Paraíbauf Paraíba 2019S006P0.97213130.94540150.99886120.014028894
Pernambucouf Pernambuco 2019S006P0.90871860.84379500.97364230.036452357
Alagoasuf Alagoas 2019S006P0.89570790.82178180.96963390.042109787
Sergipeuf Sergipe 2019S006P0.85442160.73460060.97424250.071550470
Bahiauf Bahia 2019S006P0.97920010.95019991.00820020.015110557
João Pessoa4capitalJoão Pessoa 2019S010P0.38670970.211236720.56218270.231513927
Recife4capitalRecife 2019S010P0.35279430.095921590.60966690.371491005
Maceió4capitalMaceió 2019S010P0.38244730.225433040.53946150.209468819
Aracaju4capitalAracaju 2019S010P0.37569550.144202350.60718870.314379397
Salvador4capitalSalvador 2019S010P0.26790560.068323990.46748720.380093676
Belo Horizonte4capitalBelo Horizonte 2019S010P0.44356150.263917330.62320570.206638504
Vitória4capitalVitória 2019S010P0.47595720.195301800.75661260.300855120
Rio de Janeiro9capitalRio de Janeiro 2019S010P0.66079040.485161740.83641910.135607481
São Paulo8capitalSão Paulo 2019S010P0.47857140.305392130.65175070.184629484
Curitiba4capitalCuritiba 2019S010P0.66177260.415328840.90821630.190003212
Florianópolis4capitalFlorianópolis 2019S010P0.57208920.287231660.85694670.254048058
Porto Alegre4capitalPorto Alegre 2019S010P0.62454950.394244940.85485400.188142772
Campo Grande4capitalCampo Grande 2019S010P0.23828170.118254170.35830920.257005267
Cuiabá4capitalCuiabá 2019S010P0.36865000.137268590.60003140.320233031
Goiânia4capitalGoiânia 2019S010P0.37006470.129432870.61069660.331762536
Brasília4capitalBrasília 2019S010P0.42759360.266207820.58897940.192568835
Fundamental incompleto ou equivalente4gescol Fundamental incompleto ou equivalente2019S010P0.17800560.130368300.22564290.136541742
Médio incompleto ou equivalente4gescol Médio incompleto ou equivalente 2019S010P0.22024630.150190340.29030220.162288665
Superior incompleto ou equivalente4gescol Superior incompleto ou equivalente 2019S010P0.36356030.317300610.40982000.064919946
Superior completo4gescol Superior completo 2019S010P0.67028610.599558010.74101420.053837339
S006PSimtotal Brasil 2019S006P0.94770600.935807920.95960410.006405528
S006PSim1total Capital 2019S006P0.94478230.925986860.96357780.010150173
S007PSimtotal Brasil 2019S007P0.95321790.941409010.96502680.006320746
S007PSim1total Capital 2019S007P0.95369650.934689150.97270390.010168667
S008PSimtotal Brasil 2019S008P0.97065130.958828020.98247450.006214775
S008PSim1total Capital 2019S008P0.97798540.965356780.99061390.006588311
S009PSimtotal Brasil 2019S009P0.81433800.791618330.83705770.014234744
S009PSim1total Capital 2019S009P0.81672670.780476980.85297640.022645383
S010PSimtotal Brasil 2019S010P0.36257180.329702780.39544090.046253562
S010PSim1total Capital 2019S010P0.43091470.377117240.48471210.063697480
\n" ], "text/latex": [ "A data.frame: 395 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2019 & S006P & 0.9662739 & 0.9519088 & 0.9806390 & 0.007585076\\\\\n", "\tPreta & raça & Preta & 2019 & S006P & 0.9733110 & 0.9428696 & 1.0037524 & 0.015957505\\\\\n", "\tParda & raça & Parda & 2019 & S006P & 0.9289165 & 0.9101413 & 0.9476918 & 0.010312412\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S006P & 0.9294211 & 0.9095124 & 0.9493298 & 0.010929053\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S006P & 0.9568221 & 0.9360314 & 0.9776127 & 0.011086351\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S006P & 0.9665089 & 0.9448690 & 0.9881489 & 0.011423580\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S006P & 0.9746447 & 0.9395043 & 1.0097851 & 0.018395535\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S006P & 0.9682655 & 0.9328796 & 1.0036515 & 0.018646104\\\\\n", "\t18 a 24 anos & fx\\_idade\\_S & 18 a 24 anos & 2019 & S006P & 0.9377567 & 0.9114195 & 0.9640940 & 0.014329515\\\\\n", "\t25 a 29 anos & fx\\_idade\\_S & 25 a 29 anos & 2019 & S006P & 0.9481978 & 0.9271267 & 0.9692689 & 0.011338103\\\\\n", "\t30 a 39 anos & fx\\_idade\\_S & 30 a 39 anos & 2019 & S006P & 0.9571161 & 0.9413678 & 0.9728643 & 0.008394974\\\\\n", "\t40 anos ou mais & fx\\_idade\\_S & 40 anos ou mais & 2019 & S006P & 0.9295020 & 0.8649302 & 0.9940738 & 0.035444158\\\\\n", "\turbano & urb\\_rur & urbano & 2019 & S006P & 0.9523245 & 0.9393560 & 0.9652929 & 0.006947935\\\\\n", "\trural & urb\\_rur & rural & 2019 & S006P & 0.9220950 & 0.8926638 & 0.9515261 & 0.016284855\\\\\n", "\tRondônia & uf & Rondônia & 2019 & S006P & 0.9450174 & 0.8846023 & 1.0054325 & 0.032618027\\\\\n", "\tAcre & uf & Acre & 2019 & S006P & 0.9246594 & 0.8472836 & 1.0020352 & 0.042694832\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & S006P & 0.9255540 & 0.8678541 & 0.9832539 & 0.031807182\\\\\n", "\tRoraima & uf & Roraima & 2019 & S006P & 0.9200423 & 0.8582398 & 0.9818449 & 0.034272864\\\\\n", "\tPará & uf & Pará & 2019 & S006P & 0.7882825 & 0.6822214 & 0.8943437 & 0.068647762\\\\\n", "\tAmapá & uf & Amapá & 2019 & S006P & 0.9051400 & 0.8086482 & 1.0016317 & 0.054390920\\\\\n", "\tTocantins & uf & Tocantins & 2019 & S006P & 0.9356463 & 0.8617041 & 1.0095886 & 0.040321142\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & S006P & 0.9159778 & 0.8736760 & 0.9582795 & 0.023562721\\\\\n", "\tPiauí & uf & Piauí & 2019 & S006P & 0.8627019 & 0.6869081 & 1.0384957 & 0.103966825\\\\\n", "\tCeará & uf & Ceará & 2019 & S006P & 0.9761845 & 0.9483533 & 1.0040156 & 0.014546244\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S006P & 0.9656500 & 0.9285301 & 1.0027699 & 0.019612787\\\\\n", "\tParaíba & uf & Paraíba & 2019 & S006P & 0.9721313 & 0.9454015 & 0.9988612 & 0.014028894\\\\\n", "\tPernambuco & uf & Pernambuco & 2019 & S006P & 0.9087186 & 0.8437950 & 0.9736423 & 0.036452357\\\\\n", "\tAlagoas & uf & Alagoas & 2019 & S006P & 0.8957079 & 0.8217818 & 0.9696339 & 0.042109787\\\\\n", "\tSergipe & uf & Sergipe & 2019 & S006P & 0.8544216 & 0.7346006 & 0.9742425 & 0.071550470\\\\\n", "\tBahia & uf & Bahia & 2019 & S006P & 0.9792001 & 0.9501999 & 1.0082002 & 0.015110557\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tJoão Pessoa4 & capital & João Pessoa & 2019 & S010P & 0.3867097 & 0.21123672 & 0.5621827 & 0.231513927\\\\\n", "\tRecife4 & capital & Recife & 2019 & S010P & 0.3527943 & 0.09592159 & 0.6096669 & 0.371491005\\\\\n", "\tMaceió4 & capital & Maceió & 2019 & S010P & 0.3824473 & 0.22543304 & 0.5394615 & 0.209468819\\\\\n", "\tAracaju4 & capital & Aracaju & 2019 & S010P & 0.3756955 & 0.14420235 & 0.6071887 & 0.314379397\\\\\n", "\tSalvador4 & capital & Salvador & 2019 & S010P & 0.2679056 & 0.06832399 & 0.4674872 & 0.380093676\\\\\n", "\tBelo Horizonte4 & capital & Belo Horizonte & 2019 & S010P & 0.4435615 & 0.26391733 & 0.6232057 & 0.206638504\\\\\n", "\tVitória4 & capital & Vitória & 2019 & S010P & 0.4759572 & 0.19530180 & 0.7566126 & 0.300855120\\\\\n", "\tRio de Janeiro9 & capital & Rio de Janeiro & 2019 & S010P & 0.6607904 & 0.48516174 & 0.8364191 & 0.135607481\\\\\n", "\tSão Paulo8 & capital & São Paulo & 2019 & S010P & 0.4785714 & 0.30539213 & 0.6517507 & 0.184629484\\\\\n", "\tCuritiba4 & capital & Curitiba & 2019 & S010P & 0.6617726 & 0.41532884 & 0.9082163 & 0.190003212\\\\\n", "\tFlorianópolis4 & capital & Florianópolis & 2019 & S010P & 0.5720892 & 0.28723166 & 0.8569467 & 0.254048058\\\\\n", "\tPorto Alegre4 & capital & Porto Alegre & 2019 & S010P & 0.6245495 & 0.39424494 & 0.8548540 & 0.188142772\\\\\n", "\tCampo Grande4 & capital & Campo Grande & 2019 & S010P & 0.2382817 & 0.11825417 & 0.3583092 & 0.257005267\\\\\n", "\tCuiabá4 & capital & Cuiabá & 2019 & S010P & 0.3686500 & 0.13726859 & 0.6000314 & 0.320233031\\\\\n", "\tGoiânia4 & capital & Goiânia & 2019 & S010P & 0.3700647 & 0.12943287 & 0.6106966 & 0.331762536\\\\\n", "\tBrasília4 & capital & Brasília & 2019 & S010P & 0.4275936 & 0.26620782 & 0.5889794 & 0.192568835\\\\\n", "\tFundamental incompleto ou equivalente4 & gescol & Fundamental incompleto ou equivalente & 2019 & S010P & 0.1780056 & 0.13036830 & 0.2256429 & 0.136541742\\\\\n", "\tMédio incompleto ou equivalente4 & gescol & Médio incompleto ou equivalente & 2019 & S010P & 0.2202463 & 0.15019034 & 0.2903022 & 0.162288665\\\\\n", "\tSuperior incompleto ou equivalente4 & gescol & Superior incompleto ou equivalente & 2019 & S010P & 0.3635603 & 0.31730061 & 0.4098200 & 0.064919946\\\\\n", "\tSuperior completo4 & gescol & Superior completo & 2019 & S010P & 0.6702861 & 0.59955801 & 0.7410142 & 0.053837339\\\\\n", "\tS006PSim & total & Brasil & 2019 & S006P & 0.9477060 & 0.93580792 & 0.9596041 & 0.006405528\\\\\n", "\tS006PSim1 & total & Capital & 2019 & S006P & 0.9447823 & 0.92598686 & 0.9635778 & 0.010150173\\\\\n", "\tS007PSim & total & Brasil & 2019 & S007P & 0.9532179 & 0.94140901 & 0.9650268 & 0.006320746\\\\\n", "\tS007PSim1 & total & Capital & 2019 & S007P & 0.9536965 & 0.93468915 & 0.9727039 & 0.010168667\\\\\n", "\tS008PSim & total & Brasil & 2019 & S008P & 0.9706513 & 0.95882802 & 0.9824745 & 0.006214775\\\\\n", "\tS008PSim1 & total & Capital & 2019 & S008P & 0.9779854 & 0.96535678 & 0.9906139 & 0.006588311\\\\\n", "\tS009PSim & total & Brasil & 2019 & S009P & 0.8143380 & 0.79161833 & 0.8370577 & 0.014234744\\\\\n", "\tS009PSim1 & total & Capital & 2019 & S009P & 0.8167267 & 0.78047698 & 0.8529764 & 0.022645383\\\\\n", "\tS010PSim & total & Brasil & 2019 & S010P & 0.3625718 & 0.32970278 & 0.3954409 & 0.046253562\\\\\n", "\tS010PSim1 & total & Capital & 2019 & S010P & 0.4309147 & 0.37711724 & 0.4847121 & 0.063697480\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 395 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2019 | S006P | 0.9662739 | 0.9519088 | 0.9806390 | 0.007585076 |\n", "| Preta | raça | Preta | 2019 | S006P | 0.9733110 | 0.9428696 | 1.0037524 | 0.015957505 |\n", "| Parda | raça | Parda | 2019 | S006P | 0.9289165 | 0.9101413 | 0.9476918 | 0.010312412 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S006P | 0.9294211 | 0.9095124 | 0.9493298 | 0.010929053 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S006P | 0.9568221 | 0.9360314 | 0.9776127 | 0.011086351 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S006P | 0.9665089 | 0.9448690 | 0.9881489 | 0.011423580 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S006P | 0.9746447 | 0.9395043 | 1.0097851 | 0.018395535 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S006P | 0.9682655 | 0.9328796 | 1.0036515 | 0.018646104 |\n", "| 18 a 24 anos | fx_idade_S | 18 a 24 anos | 2019 | S006P | 0.9377567 | 0.9114195 | 0.9640940 | 0.014329515 |\n", "| 25 a 29 anos | fx_idade_S | 25 a 29 anos | 2019 | S006P | 0.9481978 | 0.9271267 | 0.9692689 | 0.011338103 |\n", "| 30 a 39 anos | fx_idade_S | 30 a 39 anos | 2019 | S006P | 0.9571161 | 0.9413678 | 0.9728643 | 0.008394974 |\n", "| 40 anos ou mais | fx_idade_S | 40 anos ou mais | 2019 | S006P | 0.9295020 | 0.8649302 | 0.9940738 | 0.035444158 |\n", "| urbano | urb_rur | urbano | 2019 | S006P | 0.9523245 | 0.9393560 | 0.9652929 | 0.006947935 |\n", "| rural | urb_rur | rural | 2019 | S006P | 0.9220950 | 0.8926638 | 0.9515261 | 0.016284855 |\n", "| Rondônia | uf | Rondônia | 2019 | S006P | 0.9450174 | 0.8846023 | 1.0054325 | 0.032618027 |\n", "| Acre | uf | Acre | 2019 | S006P | 0.9246594 | 0.8472836 | 1.0020352 | 0.042694832 |\n", "| Amazonas | uf | Amazonas | 2019 | S006P | 0.9255540 | 0.8678541 | 0.9832539 | 0.031807182 |\n", "| Roraima | uf | Roraima | 2019 | S006P | 0.9200423 | 0.8582398 | 0.9818449 | 0.034272864 |\n", "| Pará | uf | Pará | 2019 | S006P | 0.7882825 | 0.6822214 | 0.8943437 | 0.068647762 |\n", "| Amapá | uf | Amapá | 2019 | S006P | 0.9051400 | 0.8086482 | 1.0016317 | 0.054390920 |\n", "| Tocantins | uf | Tocantins | 2019 | S006P | 0.9356463 | 0.8617041 | 1.0095886 | 0.040321142 |\n", "| Maranhão | uf | Maranhão | 2019 | S006P | 0.9159778 | 0.8736760 | 0.9582795 | 0.023562721 |\n", "| Piauí | uf | Piauí | 2019 | S006P | 0.8627019 | 0.6869081 | 1.0384957 | 0.103966825 |\n", "| Ceará | uf | Ceará | 2019 | S006P | 0.9761845 | 0.9483533 | 1.0040156 | 0.014546244 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S006P | 0.9656500 | 0.9285301 | 1.0027699 | 0.019612787 |\n", "| Paraíba | uf | Paraíba | 2019 | S006P | 0.9721313 | 0.9454015 | 0.9988612 | 0.014028894 |\n", "| Pernambuco | uf | Pernambuco | 2019 | S006P | 0.9087186 | 0.8437950 | 0.9736423 | 0.036452357 |\n", "| Alagoas | uf | Alagoas | 2019 | S006P | 0.8957079 | 0.8217818 | 0.9696339 | 0.042109787 |\n", "| Sergipe | uf | Sergipe | 2019 | S006P | 0.8544216 | 0.7346006 | 0.9742425 | 0.071550470 |\n", "| Bahia | uf | Bahia | 2019 | S006P | 0.9792001 | 0.9501999 | 1.0082002 | 0.015110557 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| João Pessoa4 | capital | João Pessoa | 2019 | S010P | 0.3867097 | 0.21123672 | 0.5621827 | 0.231513927 |\n", "| Recife4 | capital | Recife | 2019 | S010P | 0.3527943 | 0.09592159 | 0.6096669 | 0.371491005 |\n", "| Maceió4 | capital | Maceió | 2019 | S010P | 0.3824473 | 0.22543304 | 0.5394615 | 0.209468819 |\n", "| Aracaju4 | capital | Aracaju | 2019 | S010P | 0.3756955 | 0.14420235 | 0.6071887 | 0.314379397 |\n", "| Salvador4 | capital | Salvador | 2019 | S010P | 0.2679056 | 0.06832399 | 0.4674872 | 0.380093676 |\n", "| Belo Horizonte4 | capital | Belo Horizonte | 2019 | S010P | 0.4435615 | 0.26391733 | 0.6232057 | 0.206638504 |\n", "| Vitória4 | capital | Vitória | 2019 | S010P | 0.4759572 | 0.19530180 | 0.7566126 | 0.300855120 |\n", "| Rio de Janeiro9 | capital | Rio de Janeiro | 2019 | S010P | 0.6607904 | 0.48516174 | 0.8364191 | 0.135607481 |\n", "| São Paulo8 | capital | São Paulo | 2019 | S010P | 0.4785714 | 0.30539213 | 0.6517507 | 0.184629484 |\n", "| Curitiba4 | capital | Curitiba | 2019 | S010P | 0.6617726 | 0.41532884 | 0.9082163 | 0.190003212 |\n", "| Florianópolis4 | capital | Florianópolis | 2019 | S010P | 0.5720892 | 0.28723166 | 0.8569467 | 0.254048058 |\n", "| Porto Alegre4 | capital | Porto Alegre | 2019 | S010P | 0.6245495 | 0.39424494 | 0.8548540 | 0.188142772 |\n", "| Campo Grande4 | capital | Campo Grande | 2019 | S010P | 0.2382817 | 0.11825417 | 0.3583092 | 0.257005267 |\n", "| Cuiabá4 | capital | Cuiabá | 2019 | S010P | 0.3686500 | 0.13726859 | 0.6000314 | 0.320233031 |\n", "| Goiânia4 | capital | Goiânia | 2019 | S010P | 0.3700647 | 0.12943287 | 0.6106966 | 0.331762536 |\n", "| Brasília4 | capital | Brasília | 2019 | S010P | 0.4275936 | 0.26620782 | 0.5889794 | 0.192568835 |\n", "| Fundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2019 | S010P | 0.1780056 | 0.13036830 | 0.2256429 | 0.136541742 |\n", "| Médio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2019 | S010P | 0.2202463 | 0.15019034 | 0.2903022 | 0.162288665 |\n", "| Superior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2019 | S010P | 0.3635603 | 0.31730061 | 0.4098200 | 0.064919946 |\n", "| Superior completo4 | gescol | Superior completo | 2019 | S010P | 0.6702861 | 0.59955801 | 0.7410142 | 0.053837339 |\n", "| S006PSim | total | Brasil | 2019 | S006P | 0.9477060 | 0.93580792 | 0.9596041 | 0.006405528 |\n", "| S006PSim1 | total | Capital | 2019 | S006P | 0.9447823 | 0.92598686 | 0.9635778 | 0.010150173 |\n", "| S007PSim | total | Brasil | 2019 | S007P | 0.9532179 | 0.94140901 | 0.9650268 | 0.006320746 |\n", "| S007PSim1 | total | Capital | 2019 | S007P | 0.9536965 | 0.93468915 | 0.9727039 | 0.010168667 |\n", "| S008PSim | total | Brasil | 2019 | S008P | 0.9706513 | 0.95882802 | 0.9824745 | 0.006214775 |\n", "| S008PSim1 | total | Capital | 2019 | S008P | 0.9779854 | 0.96535678 | 0.9906139 | 0.006588311 |\n", "| S009PSim | total | Brasil | 2019 | S009P | 0.8143380 | 0.79161833 | 0.8370577 | 0.014234744 |\n", "| S009PSim1 | total | Capital | 2019 | S009P | 0.8167267 | 0.78047698 | 0.8529764 | 0.022645383 |\n", "| S010PSim | total | Brasil | 2019 | S010P | 0.3625718 | 0.32970278 | 0.3954409 | 0.046253562 |\n", "| S010PSim1 | total | Capital | 2019 | S010P | 0.4309147 | 0.37711724 | 0.4847121 | 0.063697480 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_S \n", "25 a 29 anos fx_idade_S \n", "30 a 39 anos fx_idade_S \n", "40 anos ou mais fx_idade_S \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "João Pessoa4 capital \n", "Recife4 capital \n", "Maceió4 capital \n", "Aracaju4 capital \n", "Salvador4 capital \n", "Belo Horizonte4 capital \n", "Vitória4 capital \n", "Rio de Janeiro9 capital \n", "São Paulo8 capital \n", "Curitiba4 capital \n", "Florianópolis4 capital \n", "Porto Alegre4 capital \n", "Campo Grande4 capital \n", "Cuiabá4 capital \n", "Goiânia4 capital \n", "Brasília4 capital \n", "Fundamental incompleto ou equivalente4 gescol \n", "Médio incompleto ou equivalente4 gescol \n", "Superior incompleto ou equivalente4 gescol \n", "Superior completo4 gescol \n", "S006PSim total \n", "S006PSim1 total \n", "S007PSim total \n", "S007PSim1 total \n", "S008PSim total \n", "S008PSim1 total \n", "S009PSim total \n", "S009PSim1 total \n", "S010PSim total \n", "S010PSim1 total \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "João Pessoa4 João Pessoa \n", "Recife4 Recife \n", "Maceió4 Maceió \n", "Aracaju4 Aracaju \n", "Salvador4 Salvador \n", "Belo Horizonte4 Belo Horizonte \n", "Vitória4 Vitória \n", "Rio de Janeiro9 Rio de Janeiro \n", "São Paulo8 São Paulo \n", "Curitiba4 Curitiba \n", "Florianópolis4 Florianópolis \n", "Porto Alegre4 Porto Alegre \n", "Campo Grande4 Campo Grande \n", "Cuiabá4 Cuiabá \n", "Goiânia4 Goiânia \n", "Brasília4 Brasília \n", "Fundamental incompleto ou equivalente4 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente4 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente4 Superior incompleto ou equivalente \n", "Superior completo4 Superior completo \n", "S006PSim Brasil \n", "S006PSim1 Capital \n", "S007PSim Brasil \n", "S007PSim1 Capital \n", "S008PSim Brasil \n", "S008PSim1 Capital \n", "S009PSim Brasil \n", "S009PSim1 Capital \n", "S010PSim Brasil \n", "S010PSim1 Capital \n", " Ano Indicador Sim LowerS \n", "Branca 2019 S006P 0.9662739 0.9519088 \n", "Preta 2019 S006P 0.9733110 0.9428696 \n", "Parda 2019 S006P 0.9289165 0.9101413 \n", "Até 1/2 SM 2019 S006P 0.9294211 0.9095124 \n", "1/2 até 1 SM 2019 S006P 0.9568221 0.9360314 \n", "1 até 2 SM 2019 S006P 0.9665089 0.9448690 \n", "2 até 3 SM 2019 S006P 0.9746447 0.9395043 \n", "Mais de 3 SM 2019 S006P 0.9682655 0.9328796 \n", "18 a 24 anos 2019 S006P 0.9377567 0.9114195 \n", "25 a 29 anos 2019 S006P 0.9481978 0.9271267 \n", "30 a 39 anos 2019 S006P 0.9571161 0.9413678 \n", "40 anos ou mais 2019 S006P 0.9295020 0.8649302 \n", "urbano 2019 S006P 0.9523245 0.9393560 \n", "rural 2019 S006P 0.9220950 0.8926638 \n", "Rondônia 2019 S006P 0.9450174 0.8846023 \n", "Acre 2019 S006P 0.9246594 0.8472836 \n", "Amazonas 2019 S006P 0.9255540 0.8678541 \n", "Roraima 2019 S006P 0.9200423 0.8582398 \n", "Pará 2019 S006P 0.7882825 0.6822214 \n", "Amapá 2019 S006P 0.9051400 0.8086482 \n", "Tocantins 2019 S006P 0.9356463 0.8617041 \n", "Maranhão 2019 S006P 0.9159778 0.8736760 \n", "Piauí 2019 S006P 0.8627019 0.6869081 \n", "Ceará 2019 S006P 0.9761845 0.9483533 \n", "Rio Grande do Norte 2019 S006P 0.9656500 0.9285301 \n", "Paraíba 2019 S006P 0.9721313 0.9454015 \n", "Pernambuco 2019 S006P 0.9087186 0.8437950 \n", "Alagoas 2019 S006P 0.8957079 0.8217818 \n", "Sergipe 2019 S006P 0.8544216 0.7346006 \n", "Bahia 2019 S006P 0.9792001 0.9501999 \n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "João Pessoa4 2019 S010P 0.3867097 0.21123672\n", "Recife4 2019 S010P 0.3527943 0.09592159\n", "Maceió4 2019 S010P 0.3824473 0.22543304\n", "Aracaju4 2019 S010P 0.3756955 0.14420235\n", "Salvador4 2019 S010P 0.2679056 0.06832399\n", "Belo Horizonte4 2019 S010P 0.4435615 0.26391733\n", "Vitória4 2019 S010P 0.4759572 0.19530180\n", "Rio de Janeiro9 2019 S010P 0.6607904 0.48516174\n", "São Paulo8 2019 S010P 0.4785714 0.30539213\n", "Curitiba4 2019 S010P 0.6617726 0.41532884\n", "Florianópolis4 2019 S010P 0.5720892 0.28723166\n", "Porto Alegre4 2019 S010P 0.6245495 0.39424494\n", "Campo Grande4 2019 S010P 0.2382817 0.11825417\n", "Cuiabá4 2019 S010P 0.3686500 0.13726859\n", "Goiânia4 2019 S010P 0.3700647 0.12943287\n", "Brasília4 2019 S010P 0.4275936 0.26620782\n", "Fundamental incompleto ou equivalente4 2019 S010P 0.1780056 0.13036830\n", "Médio incompleto ou equivalente4 2019 S010P 0.2202463 0.15019034\n", "Superior incompleto ou equivalente4 2019 S010P 0.3635603 0.31730061\n", "Superior completo4 2019 S010P 0.6702861 0.59955801\n", "S006PSim 2019 S006P 0.9477060 0.93580792\n", "S006PSim1 2019 S006P 0.9447823 0.92598686\n", "S007PSim 2019 S007P 0.9532179 0.94140901\n", "S007PSim1 2019 S007P 0.9536965 0.93468915\n", "S008PSim 2019 S008P 0.9706513 0.95882802\n", "S008PSim1 2019 S008P 0.9779854 0.96535678\n", "S009PSim 2019 S009P 0.8143380 0.79161833\n", "S009PSim1 2019 S009P 0.8167267 0.78047698\n", "S010PSim 2019 S010P 0.3625718 0.32970278\n", "S010PSim1 2019 S010P 0.4309147 0.37711724\n", " UpperS cvS \n", "Branca 0.9806390 0.007585076\n", "Preta 1.0037524 0.015957505\n", "Parda 0.9476918 0.010312412\n", "Até 1/2 SM 0.9493298 0.010929053\n", "1/2 até 1 SM 0.9776127 0.011086351\n", "1 até 2 SM 0.9881489 0.011423580\n", "2 até 3 SM 1.0097851 0.018395535\n", "Mais de 3 SM 1.0036515 0.018646104\n", "18 a 24 anos 0.9640940 0.014329515\n", "25 a 29 anos 0.9692689 0.011338103\n", "30 a 39 anos 0.9728643 0.008394974\n", "40 anos ou mais 0.9940738 0.035444158\n", "urbano 0.9652929 0.006947935\n", "rural 0.9515261 0.016284855\n", "Rondônia 1.0054325 0.032618027\n", "Acre 1.0020352 0.042694832\n", "Amazonas 0.9832539 0.031807182\n", "Roraima 0.9818449 0.034272864\n", "Pará 0.8943437 0.068647762\n", "Amapá 1.0016317 0.054390920\n", "Tocantins 1.0095886 0.040321142\n", "Maranhão 0.9582795 0.023562721\n", "Piauí 1.0384957 0.103966825\n", "Ceará 1.0040156 0.014546244\n", "Rio Grande do Norte 1.0027699 0.019612787\n", "Paraíba 0.9988612 0.014028894\n", "Pernambuco 0.9736423 0.036452357\n", "Alagoas 0.9696339 0.042109787\n", "Sergipe 0.9742425 0.071550470\n", "Bahia 1.0082002 0.015110557\n", "⋮ ⋮ ⋮ \n", "João Pessoa4 0.5621827 0.231513927\n", "Recife4 0.6096669 0.371491005\n", "Maceió4 0.5394615 0.209468819\n", "Aracaju4 0.6071887 0.314379397\n", "Salvador4 0.4674872 0.380093676\n", "Belo Horizonte4 0.6232057 0.206638504\n", "Vitória4 0.7566126 0.300855120\n", "Rio de Janeiro9 0.8364191 0.135607481\n", "São Paulo8 0.6517507 0.184629484\n", "Curitiba4 0.9082163 0.190003212\n", "Florianópolis4 0.8569467 0.254048058\n", "Porto Alegre4 0.8548540 0.188142772\n", "Campo Grande4 0.3583092 0.257005267\n", "Cuiabá4 0.6000314 0.320233031\n", "Goiânia4 0.6106966 0.331762536\n", "Brasília4 0.5889794 0.192568835\n", "Fundamental incompleto ou equivalente4 0.2256429 0.136541742\n", "Médio incompleto ou equivalente4 0.2903022 0.162288665\n", "Superior incompleto ou equivalente4 0.4098200 0.064919946\n", "Superior completo4 0.7410142 0.053837339\n", "S006PSim 0.9596041 0.006405528\n", "S006PSim1 0.9635778 0.010150173\n", "S007PSim 0.9650268 0.006320746\n", "S007PSim1 0.9727039 0.010168667\n", "S008PSim 0.9824745 0.006214775\n", "S008PSim1 0.9906139 0.006588311\n", "S009PSim 0.8370577 0.014234744\n", "S009PSim1 0.8529764 0.022645383\n", "S010PSim 0.3954409 0.046253562\n", "S010PSim1 0.4847121 0.063697480" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 19 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Rondônia4uf Rondônia 2019S010P0.14414580 0.0455239320.24276770.3490785
Acre4uf Acre 2019S010P0.17103094 0.0217104910.32035140.4454475
Roraima4uf Roraima 2019S010P0.14047197 0.0344792870.24646460.3849800
Amapá4uf Amapá 2019S010P0.15446528 0.0413950210.26753550.3734818
Tocantins4uf Tocantins 2019S010P0.20078192 0.0752949900.32626880.3188789
Porto Velho4capitalPorto Velho2019S010P0.13378315 0.0247679040.24279840.4157552
Rio Branco4capitalRio Branco 2019S010P0.10641712 0.0019931070.21084110.5006576
Boa Vista4capitalBoa Vista 2019S010P0.17462065 0.0284158420.32082550.4271869
Belém4capitalBelém 2019S010P0.27229725 0.0544253790.49016910.4082346
Macapá4capitalMacapá 2019S010P0.09110738-0.0092832840.19149800.5622011
Palmas4capitalPalmas 2019S010P0.32739968 0.1308585950.52394080.3062859
São Luís4capitalSão Luís 2019S010P0.28881737 0.0995423780.47809240.3343658
Natal4capitalNatal 2019S010P0.23060926 0.0613008540.39991770.3745878
Recife4capitalRecife 2019S010P0.35279425 0.0959215850.60966690.3714910
Aracaju4capitalAracaju 2019S010P0.37569552 0.1442023480.60718870.3143794
Salvador4capitalSalvador 2019S010P0.26790560 0.0683239870.46748720.3800937
Vitória4capitalVitória 2019S010P0.47595719 0.1953017980.75661260.3008551
Cuiabá4capitalCuiabá 2019S010P0.36865000 0.1372685930.60003140.3202330
Goiânia4capitalGoiânia 2019S010P0.37006473 0.1294328710.61069660.3317625
\n" ], "text/latex": [ "A data.frame: 19 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tRondônia4 & uf & Rondônia & 2019 & S010P & 0.14414580 & 0.045523932 & 0.2427677 & 0.3490785\\\\\n", "\tAcre4 & uf & Acre & 2019 & S010P & 0.17103094 & 0.021710491 & 0.3203514 & 0.4454475\\\\\n", "\tRoraima4 & uf & Roraima & 2019 & S010P & 0.14047197 & 0.034479287 & 0.2464646 & 0.3849800\\\\\n", "\tAmapá4 & uf & Amapá & 2019 & S010P & 0.15446528 & 0.041395021 & 0.2675355 & 0.3734818\\\\\n", "\tTocantins4 & uf & Tocantins & 2019 & S010P & 0.20078192 & 0.075294990 & 0.3262688 & 0.3188789\\\\\n", "\tPorto Velho4 & capital & Porto Velho & 2019 & S010P & 0.13378315 & 0.024767904 & 0.2427984 & 0.4157552\\\\\n", "\tRio Branco4 & capital & Rio Branco & 2019 & S010P & 0.10641712 & 0.001993107 & 0.2108411 & 0.5006576\\\\\n", "\tBoa Vista4 & capital & Boa Vista & 2019 & S010P & 0.17462065 & 0.028415842 & 0.3208255 & 0.4271869\\\\\n", "\tBelém4 & capital & Belém & 2019 & S010P & 0.27229725 & 0.054425379 & 0.4901691 & 0.4082346\\\\\n", "\tMacapá4 & capital & Macapá & 2019 & S010P & 0.09110738 & -0.009283284 & 0.1914980 & 0.5622011\\\\\n", "\tPalmas4 & capital & Palmas & 2019 & S010P & 0.32739968 & 0.130858595 & 0.5239408 & 0.3062859\\\\\n", "\tSão Luís4 & capital & São Luís & 2019 & S010P & 0.28881737 & 0.099542378 & 0.4780924 & 0.3343658\\\\\n", "\tNatal4 & capital & Natal & 2019 & S010P & 0.23060926 & 0.061300854 & 0.3999177 & 0.3745878\\\\\n", "\tRecife4 & capital & Recife & 2019 & S010P & 0.35279425 & 0.095921585 & 0.6096669 & 0.3714910\\\\\n", "\tAracaju4 & capital & Aracaju & 2019 & S010P & 0.37569552 & 0.144202348 & 0.6071887 & 0.3143794\\\\\n", "\tSalvador4 & capital & Salvador & 2019 & S010P & 0.26790560 & 0.068323987 & 0.4674872 & 0.3800937\\\\\n", "\tVitória4 & capital & Vitória & 2019 & S010P & 0.47595719 & 0.195301798 & 0.7566126 & 0.3008551\\\\\n", "\tCuiabá4 & capital & Cuiabá & 2019 & S010P & 0.36865000 & 0.137268593 & 0.6000314 & 0.3202330\\\\\n", "\tGoiânia4 & capital & Goiânia & 2019 & S010P & 0.37006473 & 0.129432871 & 0.6106966 & 0.3317625\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 19 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Rondônia4 | uf | Rondônia | 2019 | S010P | 0.14414580 | 0.045523932 | 0.2427677 | 0.3490785 |\n", "| Acre4 | uf | Acre | 2019 | S010P | 0.17103094 | 0.021710491 | 0.3203514 | 0.4454475 |\n", "| Roraima4 | uf | Roraima | 2019 | S010P | 0.14047197 | 0.034479287 | 0.2464646 | 0.3849800 |\n", "| Amapá4 | uf | Amapá | 2019 | S010P | 0.15446528 | 0.041395021 | 0.2675355 | 0.3734818 |\n", "| Tocantins4 | uf | Tocantins | 2019 | S010P | 0.20078192 | 0.075294990 | 0.3262688 | 0.3188789 |\n", "| Porto Velho4 | capital | Porto Velho | 2019 | S010P | 0.13378315 | 0.024767904 | 0.2427984 | 0.4157552 |\n", "| Rio Branco4 | capital | Rio Branco | 2019 | S010P | 0.10641712 | 0.001993107 | 0.2108411 | 0.5006576 |\n", "| Boa Vista4 | capital | Boa Vista | 2019 | S010P | 0.17462065 | 0.028415842 | 0.3208255 | 0.4271869 |\n", "| Belém4 | capital | Belém | 2019 | S010P | 0.27229725 | 0.054425379 | 0.4901691 | 0.4082346 |\n", "| Macapá4 | capital | Macapá | 2019 | S010P | 0.09110738 | -0.009283284 | 0.1914980 | 0.5622011 |\n", "| Palmas4 | capital | Palmas | 2019 | S010P | 0.32739968 | 0.130858595 | 0.5239408 | 0.3062859 |\n", "| São Luís4 | capital | São Luís | 2019 | S010P | 0.28881737 | 0.099542378 | 0.4780924 | 0.3343658 |\n", "| Natal4 | capital | Natal | 2019 | S010P | 0.23060926 | 0.061300854 | 0.3999177 | 0.3745878 |\n", "| Recife4 | capital | Recife | 2019 | S010P | 0.35279425 | 0.095921585 | 0.6096669 | 0.3714910 |\n", "| Aracaju4 | capital | Aracaju | 2019 | S010P | 0.37569552 | 0.144202348 | 0.6071887 | 0.3143794 |\n", "| Salvador4 | capital | Salvador | 2019 | S010P | 0.26790560 | 0.068323987 | 0.4674872 | 0.3800937 |\n", "| Vitória4 | capital | Vitória | 2019 | S010P | 0.47595719 | 0.195301798 | 0.7566126 | 0.3008551 |\n", "| Cuiabá4 | capital | Cuiabá | 2019 | S010P | 0.36865000 | 0.137268593 | 0.6000314 | 0.3202330 |\n", "| Goiânia4 | capital | Goiânia | 2019 | S010P | 0.37006473 | 0.129432871 | 0.6106966 | 0.3317625 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS \n", "Rondônia4 uf Rondônia 2019 S010P 0.14414580 0.045523932\n", "Acre4 uf Acre 2019 S010P 0.17103094 0.021710491\n", "Roraima4 uf Roraima 2019 S010P 0.14047197 0.034479287\n", "Amapá4 uf Amapá 2019 S010P 0.15446528 0.041395021\n", "Tocantins4 uf Tocantins 2019 S010P 0.20078192 0.075294990\n", "Porto Velho4 capital Porto Velho 2019 S010P 0.13378315 0.024767904\n", "Rio Branco4 capital Rio Branco 2019 S010P 0.10641712 0.001993107\n", "Boa Vista4 capital Boa Vista 2019 S010P 0.17462065 0.028415842\n", "Belém4 capital Belém 2019 S010P 0.27229725 0.054425379\n", "Macapá4 capital Macapá 2019 S010P 0.09110738 -0.009283284\n", "Palmas4 capital Palmas 2019 S010P 0.32739968 0.130858595\n", "São Luís4 capital São Luís 2019 S010P 0.28881737 0.099542378\n", "Natal4 capital Natal 2019 S010P 0.23060926 0.061300854\n", "Recife4 capital Recife 2019 S010P 0.35279425 0.095921585\n", "Aracaju4 capital Aracaju 2019 S010P 0.37569552 0.144202348\n", "Salvador4 capital Salvador 2019 S010P 0.26790560 0.068323987\n", "Vitória4 capital Vitória 2019 S010P 0.47595719 0.195301798\n", "Cuiabá4 capital Cuiabá 2019 S010P 0.36865000 0.137268593\n", "Goiânia4 capital Goiânia 2019 S010P 0.37006473 0.129432871\n", " UpperS cvS \n", "Rondônia4 0.2427677 0.3490785\n", "Acre4 0.3203514 0.4454475\n", "Roraima4 0.2464646 0.3849800\n", "Amapá4 0.2675355 0.3734818\n", "Tocantins4 0.3262688 0.3188789\n", "Porto Velho4 0.2427984 0.4157552\n", "Rio Branco4 0.2108411 0.5006576\n", "Boa Vista4 0.3208255 0.4271869\n", "Belém4 0.4901691 0.4082346\n", "Macapá4 0.1914980 0.5622011\n", "Palmas4 0.5239408 0.3062859\n", "São Luís4 0.4780924 0.3343658\n", "Natal4 0.3999177 0.3745878\n", "Recife4 0.6096669 0.3714910\n", "Aracaju4 0.6071887 0.3143794\n", "Salvador4 0.4674872 0.3800937\n", "Vitória4 0.7566126 0.3008551\n", "Cuiabá4 0.6000314 0.3202330\n", "Goiânia4 0.6106966 0.3317625" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores_cv= subset(matrizIndicadores, matrizIndicadores$cvS>0.30)\n", "matrizIndicadores_cv" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo S 2019" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 4 }