{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - S 2019 Pré-natal - Parte 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(tictoc)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 293726
  2. 1087
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 293726\n", "\\item 1087\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 293726\n", "2. 1087\n", "\n", "\n" ], "text/plain": [ "[1] 293726 1087" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.00562 0.26621 0.54401 1.00000 1.12765 61.09981 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos e calculando peso amostral - summary de verificação\n", "pns2019.1<- %>% filter(V0025A==1) \n", "pns2019.1<-pns2019.1 %>% mutate(peso_morador_selec=((V00291*(90846/168426190))))\n", "pns2019.1<-pns2019.1 %>% filter(!is.na(peso_morador_selec))\n", "summary(pns2019.1$peso_morador_selec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
2734
Não
84
NA's
88028
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2734\n", "\\item[Não] 84\n", "\\item[NA's] 88028\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2734Não\n", ": 84NA's\n", ": 88028\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2734 84 88028 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2657
Não
77
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2657\n", "\\item[Não] 77\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2657Não\n", ": 77NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2657 77 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2356
Não
378
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2356\n", "\\item[Não] 378\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2356Não\n", ": 378NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2356 378 88112 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
1822
Não
251
NA's
88773
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1822\n", "\\item[Não] 251\n", "\\item[NA's] 88773\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1822Não\n", ": 251NA's\n", ": 88773\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1822 251 88773 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
2056
Não
678
NA's
88112
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 2056\n", "\\item[Não] 678\n", "\\item[NA's] 88112\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 2056Não\n", ": 678NA's\n", ": 88112\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 2056 678 88112 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Desfechos - Indicadores\n", "\n", "# 1. Proporção de mulheres que realizaram pré-natal - S001P.\n", "pns2019.1$S001P <- NA\n", "pns2019.1$S001P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068>0] <- 2\n", "pns2019.1$S001P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 1\n", "pns2019.1$S001P<-factor(pns2019.1$S001P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S001P)\n", "\n", "\n", "# 2. Proporção de mulheres que realizaram pré-natal e que possuíam caderneta/cartão da gestante - S002P.\n", "pns2019.1$S002P <- NA\n", "pns2019.1$S002P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S002P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S075==1] <- 1\n", "pns2019.1$S002P<-factor(pns2019.1$S002P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S002P)\n", "\n", "# 3. Proporção de mulheres que iniciaram pré-natal com menos de 13 semanas ou até 3 meses de gestação - S003P.\n", "pns2019.1$S003P <- NA\n", "pns2019.1$S003P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S003P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & (pns2019.1$S06902 <= 3 | pns2019.1$S06901 < 13)] <- 1\n", "pns2019.1$S003P<-factor(pns2019.1$S003P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S003P)\n", "\n", "# 4. Proporção de mulheres que tiveram 6 ou mais consultas de pré-natal entre as gestantes com parto a termo ou pós-termo - S004P.\n", "pns2019.1$S004P <- NA\n", "pns2019.1$S004P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S11801>=37] <- 2\n", "pns2019.1$S004P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & pns2019.1$S11801>=37 & (pns2019.1$S070>=6 & pns2019.1$S070<8)] <- 1\n", "pns2019.1$S004P<-factor(pns2019.1$S004P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S004P)\n", "\n", "# 5. Proporção de mulheres que realizaram a maioria das consultas de pré-natal em estabelecimentos públicos de saúde - S005P.\n", "pns2019.1$S005P <- NA\n", "pns2019.1$S005P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1] <- 2\n", "pns2019.1$S005P[pns2019.1$C006==2 & pns2019.1$C008>=18 & pns2019.1$S068==1 & (pns2019.1$S071 <=2 | pns2019.1$S071 <=4)] <- 1\n", "pns2019.1$S005P<-factor(pns2019.1$S005P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$S005P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
urbano
69873
rural
20973
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[urbano] 69873\n", "\\item[rural] 20973\n", "\\end{description*}\n" ], "text/markdown": [ "urbano\n", ": 69873rural\n", ": 20973\n", "\n" ], "text/plain": [ "urbano rural \n", " 69873 20973 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2019.1 <- pns2019.1 %>% rename(Sit_Urbano_Rural=V0026)\n", "pns2019.1$Sit_Urbano_Rural<-factor(pns2019.1$Sit_Urbano_Rural, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n", "summary(pns2019.1$Sit_Urbano_Rural)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
2176
Acre
2380
Amazonas
3479
Roraima
2238
Pará
3853
Amapá
1554
Tocantins
1922
Maranhão
5080
Piauí
2740
Ceará
4265
Rio Grande do Norte
2962
Paraíba
3158
Pernambuco
4083
Alagoas
2987
Sergipe
2610
Bahia
3659
Minas Gerais
5209
Espírito Santo
3541
Rio de Janeiro
4966
São Paulo
6114
Paraná
3967
Santa Catarina
3738
Rio Grande do Sul
3767
Mato Grosso do Sul
2863
Mato Grosso
2468
Goiás
2702
Distrito Federal
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 2176\n", "\\item[Acre] 2380\n", "\\item[Amazonas] 3479\n", "\\item[Roraima] 2238\n", "\\item[Pará] 3853\n", "\\item[Amapá] 1554\n", "\\item[Tocantins] 1922\n", "\\item[Maranhão] 5080\n", "\\item[Piauí] 2740\n", "\\item[Ceará] 4265\n", "\\item[Rio Grande do Norte] 2962\n", "\\item[Paraíba] 3158\n", "\\item[Pernambuco] 4083\n", "\\item[Alagoas] 2987\n", "\\item[Sergipe] 2610\n", "\\item[Bahia] 3659\n", "\\item[Minas Gerais] 5209\n", "\\item[Espírito Santo] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Paraná] 3967\n", "\\item[Santa Catarina] 3738\n", "\\item[Rio Grande do Sul] 3767\n", "\\item[Mato Grosso do Sul] 2863\n", "\\item[Mato Grosso] 2468\n", "\\item[Goiás] 2702\n", "\\item[Distrito Federal] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 2176Acre\n", ": 2380Amazonas\n", ": 3479Roraima\n", ": 2238Pará\n", ": 3853Amapá\n", ": 1554Tocantins\n", ": 1922Maranhão\n", ": 5080Piauí\n", ": 2740Ceará\n", ": 4265Rio Grande do Norte\n", ": 2962Paraíba\n", ": 3158Pernambuco\n", ": 4083Alagoas\n", ": 2987Sergipe\n", ": 2610Bahia\n", ": 3659Minas Gerais\n", ": 5209Espírito Santo\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Paraná\n", ": 3967Santa Catarina\n", ": 3738Rio Grande do Sul\n", ": 3767Mato Grosso do Sul\n", ": 2863Mato Grosso\n", ": 2468Goiás\n", ": 2702Distrito Federal\n", ": 2365\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 2176 2380 3479 2238 \n", " Pará Amapá Tocantins Maranhão \n", " 3853 1554 1922 5080 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 2740 4265 2962 3158 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 4083 2987 2610 3659 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 5209 3541 4966 6114 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 3967 3738 3767 2863 \n", " Mato Grosso Goiás Distrito Federal \n", " 2468 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2019.1 <- pns2019.1 %>% rename(Unidades_da_Federacao=V0001)\n", "pns2019.1$Unidades_da_Federacao<-factor(pns2019.1$Unidades_da_Federacao, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2019.1$Unidades_da_Federacao)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
17602
Nordeste
31544
Sudeste
19830
Sul
11472
Centro-Oeste
10398
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 17602\n", "\\item[Nordeste] 31544\n", "\\item[Sudeste] 19830\n", "\\item[Sul] 11472\n", "\\item[Centro-Oeste] 10398\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 17602Nordeste\n", ": 31544Sudeste\n", ": 19830Sul\n", ": 11472Centro-Oeste\n", ": 10398\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 17602 31544 19830 11472 10398 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2019.1 <- pns2019.1 %>% \n", " mutate(GrandesRegioes = fct_collapse(Unidades_da_Federacao, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n", "summary(pns2019.1$GrandesRegioes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
2176
Rio Branco
2380
Manaus
3479
Boa Vista
2238
Belém
3853
Macapá
1554
Palmas
1922
São Luís
5080
Teresina
2740
Fortaleza
4265
Natal
2962
João Pessoa
3158
Recife
4083
Maceió
2987
Aracaju
2610
Salvador
3659
Belo Horizonte
5209
Vitória
3541
Rio de Janeiro
4966
São Paulo
6114
Curitiba
3967
Florianópolis
3738
Porto Alegre
3767
Campo Grande
2863
Cuiabá
2468
Goiânia
2702
Brasília
2365
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 2176\n", "\\item[Rio Branco] 2380\n", "\\item[Manaus] 3479\n", "\\item[Boa Vista] 2238\n", "\\item[Belém] 3853\n", "\\item[Macapá] 1554\n", "\\item[Palmas] 1922\n", "\\item[São Luís] 5080\n", "\\item[Teresina] 2740\n", "\\item[Fortaleza] 4265\n", "\\item[Natal] 2962\n", "\\item[João Pessoa] 3158\n", "\\item[Recife] 4083\n", "\\item[Maceió] 2987\n", "\\item[Aracaju] 2610\n", "\\item[Salvador] 3659\n", "\\item[Belo Horizonte] 5209\n", "\\item[Vitória] 3541\n", "\\item[Rio de Janeiro] 4966\n", "\\item[São Paulo] 6114\n", "\\item[Curitiba] 3967\n", "\\item[Florianópolis] 3738\n", "\\item[Porto Alegre] 3767\n", "\\item[Campo Grande] 2863\n", "\\item[Cuiabá] 2468\n", "\\item[Goiânia] 2702\n", "\\item[Brasília] 2365\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 2176Rio Branco\n", ": 2380Manaus\n", ": 3479Boa Vista\n", ": 2238Belém\n", ": 3853Macapá\n", ": 1554Palmas\n", ": 1922São Luís\n", ": 5080Teresina\n", ": 2740Fortaleza\n", ": 4265Natal\n", ": 2962João Pessoa\n", ": 3158Recife\n", ": 4083Maceió\n", ": 2987Aracaju\n", ": 2610Salvador\n", ": 3659Belo Horizonte\n", ": 5209Vitória\n", ": 3541Rio de Janeiro\n", ": 4966São Paulo\n", ": 6114Curitiba\n", ": 3967Florianópolis\n", ": 3738Porto Alegre\n", ": 3767Campo Grande\n", ": 2863Cuiabá\n", ": 2468Goiânia\n", ": 2702Brasília\n", ": 2365\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 2176 2380 3479 2238 3853 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 1554 1922 5080 2740 4265 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 2962 3158 4083 2987 2610 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 3659 5209 3541 4966 6114 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 3967 3738 3767 2863 2468 \n", " Goiânia Brasília \n", " 2702 2365 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2019.1<- pns2019.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federacao,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2019.1$Capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
18 a 24 anos
8145
25 a 29 anos
7249
30 a 39 anos
18150
40 anos ou mais
54987
NA's
2315
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[18 a 24 anos] 8145\n", "\\item[25 a 29 anos] 7249\n", "\\item[30 a 39 anos] 18150\n", "\\item[40 anos ou mais] 54987\n", "\\item[NA's] 2315\n", "\\end{description*}\n" ], "text/markdown": [ "18 a 24 anos\n", ": 814525 a 29 anos\n", ": 724930 a 39 anos\n", ": 1815040 anos ou mais\n", ": 54987NA's\n", ": 2315\n", "\n" ], "text/plain": [ " 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais NA's \n", " 8145 7249 18150 54987 2315 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Faixas Etárias\n", "pns2019.1 <- pns2019.1 %>% mutate(fx_idade_S=cut(C008,\n", " breaks = c(18,25,30,40,120),\n", " labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n", " ordered_result = TRUE, right = FALSE))\n", "summary(pns2019.1$fx_idade_S)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
33133
Preta
10345
Parda
45994
NA's
1374
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 33133\n", "\\item[Preta] 10345\n", "\\item[Parda] 45994\n", "\\item[NA's] 1374\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 33133Preta\n", ": 10345Parda\n", ": 45994NA's\n", ": 1374\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 33133 10345 45994 1374 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Raça\n", "pns2019.1 <- pns2019.1 %>% mutate(Raca= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "\n", "pns2019.1$Raca<-factor(pns2019.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "\n", "summary(pns2019.1$Raca)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
23697
1/2 até 1 SM
26406
1 até 2 SM
22466
2 até 3 SM
7612
Mais de 3 SM
10643
NA's
22
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 23697\n", "\\item[1/2 até 1 SM] 26406\n", "\\item[1 até 2 SM] 22466\n", "\\item[2 até 3 SM] 7612\n", "\\item[Mais de 3 SM] 10643\n", "\\item[NA's] 22\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 236971/2 até 1 SM\n", ": 264061 até 2 SM\n", ": 224662 até 3 SM\n", ": 7612Mais de 3 SM\n", ": 10643NA's\n", ": 22\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 23697 26406 22466 7612 10643 22 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rendimento domiciliar per capita\n", "pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n", " ifelse(VDF004%in% 3, 2, \n", " ifelse(VDF004%in% 4, 3,\n", " ifelse(VDF004%in% 5, 4, \n", " ifelse(is.na(VDF004)==TRUE, NA_real_, 5))))))\n", "\n", "pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n", " \"2 até 3 SM\",\"Mais de 3 SM\"))\n", "summary(pns2019.1$rend_per_capita)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Escolaridade" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Fundamental incompleto ou equivalente
36276
Médio incompleto ou equivalente
13520
Superior incompleto ou equivalente
27433
Superior completo
13617
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Fundamental incompleto ou equivalente] 36276\n", "\\item[Médio incompleto ou equivalente] 13520\n", "\\item[Superior incompleto ou equivalente] 27433\n", "\\item[Superior completo] 13617\n", "\\end{description*}\n" ], "text/markdown": [ "Fundamental incompleto ou equivalente\n", ": 36276Médio incompleto ou equivalente\n", ": 13520Superior incompleto ou equivalente\n", ": 27433Superior completo\n", ": 13617\n", "\n" ], "text/plain": [ "Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n", " 36276 13520 \n", " Superior incompleto ou equivalente Superior completo \n", " 27433 13617 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Escolaridade\n", "pns2019.1 <- pns2019.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n", " ifelse(VDD004A%in% 3:4, 2, \n", " ifelse(VDD004A%in% 5:6, 3,4\n", " ))))\n", "\n", "pns2019.1$gescol<-factor(pns2019.1$gescol, levels=c(1,2,3,4), \n", " labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n", " \"Superior incompleto ou equivalente\",\"Superior completo\"))\n", "summary(pns2019.1$gescol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec S001P S002P \n", " 1210010: 1167 140001681: 18 Min. : 0.00562 Sim : 2734 Sim : 2657 \n", " 1410011: 792 140003815: 18 1st Qu.: 0.26621 Não : 84 Não : 77 \n", " 2710111: 779 140005777: 18 Median : 0.54401 NA's:88028 NA's:88112 \n", " 2410011: 745 140006746: 18 Mean : 1.00000 \n", " 5010011: 738 140007081: 18 3rd Qu.: 1.12765 \n", " 3210011: 711 140007715: 18 Max. :61.09981 \n", " (Other):85914 (Other) :90738 \n", " S003P S004P S005P C008 C006 \n", " Sim : 2356 Sim : 2073 Sim : 2056 Min. : 15.00 Min. :1.000 \n", " Não : 378 Não : 661 Não : 678 1st Qu.: 32.00 1st Qu.:1.000 \n", " NA's:88112 NA's:88112 NA's:88112 Median : 45.00 Median :2.000 \n", " Mean : 46.39 Mean :1.529 \n", " 3rd Qu.: 60.00 3rd Qu.:2.000 \n", " Max. :107.00 Max. :2.000 \n", " \n", " C009 S068 S11801 S118 \n", " Min. :1.000 Min. :1.00 Min. : 2.00 Min. :1.0 \n", " 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:38.00 1st Qu.:1.0 \n", " Median :4.000 Median :1.00 Median :39.00 Median :1.0 \n", " Mean :2.679 Mean :1.03 Mean :38.16 Mean :1.1 \n", " 3rd Qu.:4.000 3rd Qu.:1.00 3rd Qu.:40.00 3rd Qu.:1.0 \n", " Max. :9.000 Max. :2.00 Max. :43.00 Max. :2.0 \n", " NA's :87936 NA's :88227 NA's :87936 \n", " V0031 Sit_Urbano_Rural Unidades_da_Federacao GrandesRegioes \n", " Min. :1.000 urbano:69873 São Paulo : 6114 Norte :17602 \n", " 1st Qu.:1.000 rural :20973 Minas Gerais : 5209 Nordeste :31544 \n", " Median :2.000 Maranhão : 5080 Sudeste :19830 \n", " Mean :2.605 Rio de Janeiro: 4966 Sul :11472 \n", " 3rd Qu.:4.000 Ceará : 4265 Centro-Oeste:10398 \n", " Max. :4.000 Pernambuco : 4083 \n", " (Other) :61129 \n", " Capital fx_idade_S Raca \n", " São Paulo : 6114 18 a 24 anos : 8145 Branca:33133 \n", " Belo Horizonte: 5209 25 a 29 anos : 7249 Preta :10345 \n", " São Luís : 5080 30 a 39 anos :18150 Parda :45994 \n", " Rio de Janeiro: 4966 40 anos ou mais:54987 NA's : 1374 \n", " Fortaleza : 4265 NA's : 2315 \n", " Recife : 4083 \n", " (Other) :61129 \n", " rend_per_capita gescol \n", " Até 1/2 SM :23697 Fundamental incompleto ou equivalente:36276 \n", " 1/2 até 1 SM:26406 Médio incompleto ou equivalente :13520 \n", " 1 até 2 SM :22466 Superior incompleto ou equivalente :27433 \n", " 2 até 3 SM : 7612 Superior completo :13617 \n", " Mais de 3 SM:10643 \n", " NA's : 22 \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando variáveis para cálculo de indicadores no survey\n", "pns2019Ssurvey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"S001P\", \"S002P\", \"S003P\",\n", " \"S004P\", \"S005P\", \"C008\", \"C006\", \"C009\", \"S068\", \"S11801\", \"S118\",\n", " \"V0031\", \"Sit_Urbano_Rural\", \"Unidades_da_Federacao\",\n", " \"GrandesRegioes\", \"Capital\", \"fx_idade_S\", \"Raca\",\n", " \"rend_per_capita\", \"gescol\") #\"Sexo\", \n", "summary(pns2019Ssurvey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo S 2019 - Parte 1" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "#Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2019Ssurvey, file.path(diretorio_saida, \"pns2019Ssurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "desPNS=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_morador_selec, nest=TRUE, \n", " data=pns2019Ssurvey)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "#survey design S001P\n", "desPNSS001P=subset(desPNS, C006==2 & C008>=18 & S068>0)\n", "desPNSS001P_C=subset(desPNS, C006==2 & C008>=18 & S068>0 & V0031==1)\n", "desPNSS001P_R=subset(desPNS, C006==2 & C008>=18 & S068>0 & !is.na(Raca))" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "#survey design S002P, S003P, S005P\n", "desPNSS002P=subset(desPNS, C006==2 & C008>=18 & S068==1)\n", "desPNSS002P_C=subset(desPNS, C006==2 & C008>=18 & S068==1 & V0031==1)\n", "desPNSS002P_R=subset(desPNS, C006==2 & C008>=18 & S068==1 & !is.na(Raca)) " ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "#survey design S004P\n", "desPNSS004P=subset(desPNS, C006==2 & C008>=18 & (S068==1 & S11801>=37))\n", "desPNSS004P_C=subset(desPNS, C006==2 & C008>=18 & (S068==1 & S11801>=37) & V0031==1) \n", "desPNSS004P_R=subset(desPNS, C006==2 & C008>=18 & (S068==1 & S11801>=37) & !is.na(Raca))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Criação da tabela de indicadores\n", "Essa tabela é responsável por unir os indicadores no formato do painel de indicadores" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores = data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "ListaIndicadores = c(~S001P, ~S002P, ~S003P, ~S004P, ~S005P)\n", "ListaIndicadoresTexto = c(\"S001P\", \"S002P\", \"S003P\", \"S004P\", \"S005P\" )\n", "ListaTotais = c('Brasil','Capital')\n", "Ano <- \"2019\"" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "ListaDominiosS001 = c(~Raca,~rend_per_capita,~fx_idade_S,~Sit_Urbano_Rural,\n", " ~Unidades_da_Federacao,~GrandesRegioes,~Capital,\n", " ~gescol)\n", "ListaDominiosTextoS001= c(\"raça\",\"rend_per_capita\",\"fx_idade_S\",\"urb_rur\",\n", " \"uf\",\"região\",\"capital\",\"gescol\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores\n", "Essas iterações rodam por indicador, abrangência e por design" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "#Cálculo dos indicadores usando o pacote survey \n", "i <- 0\n", "#Para cada indicador\n", "for( indicador in ListaIndicadores){\n", " i <- i + 1; j <- 1\n", " if (ListaIndicadoresTexto[i]== \"S001P\" | \n", " ListaIndicadoresTexto[i]== \"S002P\" | \n", " ListaIndicadoresTexto[i]== \"S003P\" | \n", " ListaIndicadoresTexto[i]== \"S004P\" | \n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " ListaDominios<-ListaDominiosS001\n", " ListaDominiosTexto<-ListaDominiosTextoS001\n", " } else {\n", " ListaDominios<-ListaDominiosS001\n", "ListaDominiosTexto<-ListaDominiosTextoS001\n", " }\n", " #Para cada dominio\n", " for (dominio in ListaDominios){\n", "#design especifico para capital que é subconjunto do dataframe total\n", " if (ListaDominiosTexto[j]==\"capital\"){\n", "#designs especificos por variavel que são subconjuntos do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S002P\" |\n", " ListaIndicadoresTexto[i]== \"S003P\" |\n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P_C , svymean,vartype= c(\"ci\",\"cv\")) \n", " } else if (ListaIndicadoresTexto[i]== \"S001P\") {\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS001P_C , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if (ListaIndicadoresTexto[i]== \"S004P\") {\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS004P_C, svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " } else if (ListaDominiosTexto[j]==\"raça\"){\n", " if (ListaIndicadoresTexto[i]== \"S002P\" |\n", " ListaIndicadoresTexto[i]== \"S003P\" |\n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS001P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S004P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS004P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #design geral para o subconjunto maior que 15 anos\n", " } else { \n", " if (ListaIndicadoresTexto[i]== \"S002P\" |\n", " ListaIndicadoresTexto[i]== \"S003P\" |\n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS001P , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S004P\")\n", " {\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS004P , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " }\n", "#União do dataframe de indicadores no formato do painel disponibilizado para PNS\n", "dataframe_indicador<-data.frame(dataframe_indicador)\n", " colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Nao\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n", " dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n", " dataframe_indicador$Ano <- Ano\n", " dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n", " matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n", " j <- j + 1\n", " }\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando a tabela pela abrangência total" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "i <- 0\n", "#para cada indicador\n", "for(indicador in ListaIndicadores){\n", " i <- i + 1\n", " #para os totais Brasil e total das capitais\n", " for(total in ListaTotais){\n", " dataframe_indicador <- data.frame()\n", " dataframe_indicador_S <- data.frame()\n", " #Uso do design que é subconjunto do dataset para cada Capital\n", " if (total == \"Capital\"){\n", " #Indicadores que são subconjunto do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S002P\" |\n", " ListaIndicadoresTexto[i]== \"S003P\" |\n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS002P_C)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS001P_C)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S004P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS004P_C)\n", " }\n", " } else {\n", " if (ListaIndicadoresTexto[i]== \"S002P\" |\n", " ListaIndicadoresTexto[i]== \"S003P\" |\n", " ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS002P)\n", " } else if (ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS001P)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S004P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS004P)\n", " }\n", " }\n", " intervalo_confianca <- confint(dataframe_indicador)\n", " coeficiente_variacao <- cv(dataframe_indicador)\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n", " \n", " dataframe_indicador <- dataframe_indicador %>% \n", " select('mean','X2.5..','X97.5..',coeficiente_variacao) \n", " dataframe_indicador_S <- dataframe_indicador %>% \n", " slice(1)\n", " \n", " colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n", " dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n", " \n", " dataframe_indicador_S$abr_tipo <- \"total\"\n", " dataframe_indicador_S$abr_nome <- total\n", " dataframe_indicador_S$Ano <- Ano \n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n", " \n", " matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 10 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><chr><chr><chr><dbl><dbl><dbl><dbl>
S001PSimtotalBrasil 2019S001P0.98021810.97358000.98685620.003455195
S001PSim1totalCapital2019S001P0.98064960.97210020.98919900.004448070
S002PSimtotalBrasil 2019S002P0.96240120.94926200.97554040.006965703
S002PSim1totalCapital2019S002P0.93414460.90502840.96326090.015902776
S003PSimtotalBrasil 2019S003P0.88149290.86308160.89990410.010656560
S003PSim1totalCapital2019S003P0.88980810.85474620.92487010.020104431
S004PSimtotalBrasil 2019S004P0.89392330.87486690.91297970.010876579
S004PSim1totalCapital2019S004P0.90867370.87852550.93882180.016927946
S005PSimtotalBrasil 2019S005P0.67126860.63830400.70423330.025055548
S005PSim1totalCapital2019S005P0.54676010.49247810.60104200.050653646
\n" ], "text/latex": [ "A data.frame: 10 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tS001PSim & total & Brasil & 2019 & S001P & 0.9802181 & 0.9735800 & 0.9868562 & 0.003455195\\\\\n", "\tS001PSim1 & total & Capital & 2019 & S001P & 0.9806496 & 0.9721002 & 0.9891990 & 0.004448070\\\\\n", "\tS002PSim & total & Brasil & 2019 & S002P & 0.9624012 & 0.9492620 & 0.9755404 & 0.006965703\\\\\n", "\tS002PSim1 & total & Capital & 2019 & S002P & 0.9341446 & 0.9050284 & 0.9632609 & 0.015902776\\\\\n", "\tS003PSim & total & Brasil & 2019 & S003P & 0.8814929 & 0.8630816 & 0.8999041 & 0.010656560\\\\\n", "\tS003PSim1 & total & Capital & 2019 & S003P & 0.8898081 & 0.8547462 & 0.9248701 & 0.020104431\\\\\n", "\tS004PSim & total & Brasil & 2019 & S004P & 0.8939233 & 0.8748669 & 0.9129797 & 0.010876579\\\\\n", "\tS004PSim1 & total & Capital & 2019 & S004P & 0.9086737 & 0.8785255 & 0.9388218 & 0.016927946\\\\\n", "\tS005PSim & total & Brasil & 2019 & S005P & 0.6712686 & 0.6383040 & 0.7042333 & 0.025055548\\\\\n", "\tS005PSim1 & total & Capital & 2019 & S005P & 0.5467601 & 0.4924781 & 0.6010420 & 0.050653646\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 10 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| S001PSim | total | Brasil | 2019 | S001P | 0.9802181 | 0.9735800 | 0.9868562 | 0.003455195 |\n", "| S001PSim1 | total | Capital | 2019 | S001P | 0.9806496 | 0.9721002 | 0.9891990 | 0.004448070 |\n", "| S002PSim | total | Brasil | 2019 | S002P | 0.9624012 | 0.9492620 | 0.9755404 | 0.006965703 |\n", "| S002PSim1 | total | Capital | 2019 | S002P | 0.9341446 | 0.9050284 | 0.9632609 | 0.015902776 |\n", "| S003PSim | total | Brasil | 2019 | S003P | 0.8814929 | 0.8630816 | 0.8999041 | 0.010656560 |\n", "| S003PSim1 | total | Capital | 2019 | S003P | 0.8898081 | 0.8547462 | 0.9248701 | 0.020104431 |\n", "| S004PSim | total | Brasil | 2019 | S004P | 0.8939233 | 0.8748669 | 0.9129797 | 0.010876579 |\n", "| S004PSim1 | total | Capital | 2019 | S004P | 0.9086737 | 0.8785255 | 0.9388218 | 0.016927946 |\n", "| S005PSim | total | Brasil | 2019 | S005P | 0.6712686 | 0.6383040 | 0.7042333 | 0.025055548 |\n", "| S005PSim1 | total | Capital | 2019 | S005P | 0.5467601 | 0.4924781 | 0.6010420 | 0.050653646 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n", "S001PSim total Brasil 2019 S001P 0.9802181 0.9735800 0.9868562\n", "S001PSim1 total Capital 2019 S001P 0.9806496 0.9721002 0.9891990\n", "S002PSim total Brasil 2019 S002P 0.9624012 0.9492620 0.9755404\n", "S002PSim1 total Capital 2019 S002P 0.9341446 0.9050284 0.9632609\n", "S003PSim total Brasil 2019 S003P 0.8814929 0.8630816 0.8999041\n", "S003PSim1 total Capital 2019 S003P 0.8898081 0.8547462 0.9248701\n", "S004PSim total Brasil 2019 S004P 0.8939233 0.8748669 0.9129797\n", "S004PSim1 total Capital 2019 S004P 0.9086737 0.8785255 0.9388218\n", "S005PSim total Brasil 2019 S005P 0.6712686 0.6383040 0.7042333\n", "S005PSim1 total Capital 2019 S005P 0.5467601 0.4924781 0.6010420\n", " cvS \n", "S001PSim 0.003455195\n", "S001PSim1 0.004448070\n", "S002PSim 0.006965703\n", "S002PSim1 0.015902776\n", "S003PSim 0.010656560\n", "S003PSim1 0.020104431\n", "S004PSim 0.010876579\n", "S004PSim1 0.016927946\n", "S005PSim 0.025055548\n", "S005PSim1 0.050653646" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_totais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 395 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2019S001P0.98483420.97280090.99686756.234103e-03
Pretaraça Preta 2019S001P0.97062140.94969670.99154621.099923e-02
Pardaraça Parda 2019S001P0.98028930.97184360.98873504.395738e-03
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019S001P0.97486960.96346490.98627435.968842e-03
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019S001P0.98090000.96913230.99266766.120930e-03
1 até 2 SMrend_per_capita1 até 2 SM 2019S001P0.99000640.97982801.00018475.245551e-03
2 até 3 SMrend_per_capita2 até 3 SM 2019S001P0.98747880.96846891.00648889.822109e-03
Mais de 3 SMrend_per_capitaMais de 3 SM 2019S001P0.98505700.95599671.01411731.505188e-02
18 a 24 anosfx_idade_S 18 a 24 anos 2019S001P0.97800030.96364300.99235777.490081e-03
25 a 29 anosfx_idade_S 25 a 29 anos 2019S001P0.97613190.95996600.99229798.449762e-03
30 a 39 anosfx_idade_S 30 a 39 anos 2019S001P0.98726480.98013660.99439313.683855e-03
40 anos ou maisfx_idade_S 40 anos ou mais 2019S001P0.95848020.92861910.98834141.589556e-02
urbanourb_rur urbano 2019S001P0.98226300.97527680.98924923.628817e-03
ruralurb_rur rural 2019S001P0.96903090.94952190.98853991.027184e-02
Rondôniauf Rondônia 2019S001P0.99224320.98135131.00313515.600634e-03
Acreuf Acre 2019S001P0.94009310.87400581.00618043.586734e-02
Amazonasuf Amazonas 2019S001P0.94716380.90975900.98456862.014902e-02
Roraimauf Roraima 2019S001P0.93816250.87784330.99848183.280420e-02
Paráuf Pará 2019S001P0.97537710.95110060.99965351.269886e-02
Amapáuf Amapá 2019S001P0.93827930.86747071.00908803.850401e-02
Tocantinsuf Tocantins 2019S001P1.00000001.00000001.00000000.000000e+00
Maranhãouf Maranhão 2019S001P0.98820020.97746060.99893995.544946e-03
Piauíuf Piauí 2019S001P1.00000001.00000001.00000000.000000e+00
Cearáuf Ceará 2019S001P0.99085780.97300031.00871549.195250e-03
Rio Grande do Norteuf Rio Grande do Norte2019S001P0.95994200.92830550.99157851.681495e-02
Paraíbauf Paraíba 2019S001P0.92597560.85496510.99698623.912687e-02
Pernambucouf Pernambuco 2019S001P0.96536980.92898151.00175821.923183e-02
Alagoasuf Alagoas 2019S001P0.96419400.93053570.99785231.781065e-02
Sergipeuf Sergipe 2019S001P1.00000001.00000001.00000001.782482e-17
Bahiauf Bahia 2019S001P0.99565940.98713761.00418124.366894e-03
João Pessoa4capitalJoão Pessoa 2019S005P0.48910240.313337730.66486700.183351143
Recife4capitalRecife 2019S005P0.61540320.359466560.87133980.212189839
Maceió4capitalMaceió 2019S005P0.67702750.539956470.81409860.103297871
Aracaju4capitalAracaju 2019S005P0.53896700.281519700.79641430.243712643
Salvador4capitalSalvador 2019S005P0.53064420.266075860.79521260.254381995
Belo Horizonte4capitalBelo Horizonte 2019S005P0.37414570.202693720.54559760.233804895
Vitória4capitalVitória 2019S005P0.48521180.201012290.76941130.298843552
Rio de Janeiro9capitalRio de Janeiro 2019S005P0.50615340.274853240.73745350.233155491
São Paulo8capitalSão Paulo 2019S005P0.39258470.214721690.57044770.231155467
Curitiba4capitalCuritiba 2019S005P0.26203240.031011290.49305340.449830155
Florianópolis4capitalFlorianópolis 2019S005P0.57731660.315138850.83949440.231704095
Porto Alegre4capitalPorto Alegre 2019S005P0.40388610.171450330.63632180.293626959
Campo Grande4capitalCampo Grande 2019S005P0.64916800.506509670.79182620.112122258
Cuiabá4capitalCuiabá 2019S005P0.62687270.372789250.88095620.206799253
Goiânia4capitalGoiânia 2019S005P0.57278470.326294930.81927450.219563127
Brasília4capitalBrasília 2019S005P0.63201220.472979550.79104480.128384529
Fundamental incompleto ou equivalente4gescol Fundamental incompleto ou equivalente2019S005P0.91249380.872719150.95226850.022239685
Médio incompleto ou equivalente4gescol Médio incompleto ou equivalente 2019S005P0.90123960.854829240.94765000.026274048
Superior incompleto ou equivalente4gescol Superior incompleto ou equivalente 2019S005P0.68020390.632501290.72790640.035781180
Superior completo4gescol Superior completo 2019S005P0.20323870.148031430.25844590.138593119
S001PSimtotal Brasil 2019S001P0.98021810.973579970.98685620.003455195
S001PSim1total Capital 2019S001P0.98064960.972100240.98919900.004448070
S002PSimtotal Brasil 2019S002P0.96240120.949261980.97554040.006965703
S002PSim1total Capital 2019S002P0.93414460.905028410.96326090.015902776
S003PSimtotal Brasil 2019S003P0.88149290.863081590.89990410.010656560
S003PSim1total Capital 2019S003P0.88980810.854746180.92487010.020104431
S004PSimtotal Brasil 2019S004P0.89392330.874866870.91297970.010876579
S004PSim1total Capital 2019S004P0.90867370.878525540.93882180.016927946
S005PSimtotal Brasil 2019S005P0.67126860.638303970.70423330.025055548
S005PSim1total Capital 2019S005P0.54676010.492478100.60104200.050653646
\n" ], "text/latex": [ "A data.frame: 395 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2019 & S001P & 0.9848342 & 0.9728009 & 0.9968675 & 6.234103e-03\\\\\n", "\tPreta & raça & Preta & 2019 & S001P & 0.9706214 & 0.9496967 & 0.9915462 & 1.099923e-02\\\\\n", "\tParda & raça & Parda & 2019 & S001P & 0.9802893 & 0.9718436 & 0.9887350 & 4.395738e-03\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & S001P & 0.9748696 & 0.9634649 & 0.9862743 & 5.968842e-03\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & S001P & 0.9809000 & 0.9691323 & 0.9926676 & 6.120930e-03\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & S001P & 0.9900064 & 0.9798280 & 1.0001847 & 5.245551e-03\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & S001P & 0.9874788 & 0.9684689 & 1.0064888 & 9.822109e-03\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & S001P & 0.9850570 & 0.9559967 & 1.0141173 & 1.505188e-02\\\\\n", "\t18 a 24 anos & fx\\_idade\\_S & 18 a 24 anos & 2019 & S001P & 0.9780003 & 0.9636430 & 0.9923577 & 7.490081e-03\\\\\n", "\t25 a 29 anos & fx\\_idade\\_S & 25 a 29 anos & 2019 & S001P & 0.9761319 & 0.9599660 & 0.9922979 & 8.449762e-03\\\\\n", "\t30 a 39 anos & fx\\_idade\\_S & 30 a 39 anos & 2019 & S001P & 0.9872648 & 0.9801366 & 0.9943931 & 3.683855e-03\\\\\n", "\t40 anos ou mais & fx\\_idade\\_S & 40 anos ou mais & 2019 & S001P & 0.9584802 & 0.9286191 & 0.9883414 & 1.589556e-02\\\\\n", "\turbano & urb\\_rur & urbano & 2019 & S001P & 0.9822630 & 0.9752768 & 0.9892492 & 3.628817e-03\\\\\n", "\trural & urb\\_rur & rural & 2019 & S001P & 0.9690309 & 0.9495219 & 0.9885399 & 1.027184e-02\\\\\n", "\tRondônia & uf & Rondônia & 2019 & S001P & 0.9922432 & 0.9813513 & 1.0031351 & 5.600634e-03\\\\\n", "\tAcre & uf & Acre & 2019 & S001P & 0.9400931 & 0.8740058 & 1.0061804 & 3.586734e-02\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & S001P & 0.9471638 & 0.9097590 & 0.9845686 & 2.014902e-02\\\\\n", "\tRoraima & uf & Roraima & 2019 & S001P & 0.9381625 & 0.8778433 & 0.9984818 & 3.280420e-02\\\\\n", "\tPará & uf & Pará & 2019 & S001P & 0.9753771 & 0.9511006 & 0.9996535 & 1.269886e-02\\\\\n", "\tAmapá & uf & Amapá & 2019 & S001P & 0.9382793 & 0.8674707 & 1.0090880 & 3.850401e-02\\\\\n", "\tTocantins & uf & Tocantins & 2019 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & S001P & 0.9882002 & 0.9774606 & 0.9989399 & 5.544946e-03\\\\\n", "\tPiauí & uf & Piauí & 2019 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tCeará & uf & Ceará & 2019 & S001P & 0.9908578 & 0.9730003 & 1.0087154 & 9.195250e-03\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2019 & S001P & 0.9599420 & 0.9283055 & 0.9915785 & 1.681495e-02\\\\\n", "\tParaíba & uf & Paraíba & 2019 & S001P & 0.9259756 & 0.8549651 & 0.9969862 & 3.912687e-02\\\\\n", "\tPernambuco & uf & Pernambuco & 2019 & S001P & 0.9653698 & 0.9289815 & 1.0017582 & 1.923183e-02\\\\\n", "\tAlagoas & uf & Alagoas & 2019 & S001P & 0.9641940 & 0.9305357 & 0.9978523 & 1.781065e-02\\\\\n", "\tSergipe & uf & Sergipe & 2019 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 1.782482e-17\\\\\n", "\tBahia & uf & Bahia & 2019 & S001P & 0.9956594 & 0.9871376 & 1.0041812 & 4.366894e-03\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tJoão Pessoa4 & capital & João Pessoa & 2019 & S005P & 0.4891024 & 0.31333773 & 0.6648670 & 0.183351143\\\\\n", "\tRecife4 & capital & Recife & 2019 & S005P & 0.6154032 & 0.35946656 & 0.8713398 & 0.212189839\\\\\n", "\tMaceió4 & capital & Maceió & 2019 & S005P & 0.6770275 & 0.53995647 & 0.8140986 & 0.103297871\\\\\n", "\tAracaju4 & capital & Aracaju & 2019 & S005P & 0.5389670 & 0.28151970 & 0.7964143 & 0.243712643\\\\\n", "\tSalvador4 & capital & Salvador & 2019 & S005P & 0.5306442 & 0.26607586 & 0.7952126 & 0.254381995\\\\\n", "\tBelo Horizonte4 & capital & Belo Horizonte & 2019 & S005P & 0.3741457 & 0.20269372 & 0.5455976 & 0.233804895\\\\\n", "\tVitória4 & capital & Vitória & 2019 & S005P & 0.4852118 & 0.20101229 & 0.7694113 & 0.298843552\\\\\n", "\tRio de Janeiro9 & capital & Rio de Janeiro & 2019 & S005P & 0.5061534 & 0.27485324 & 0.7374535 & 0.233155491\\\\\n", "\tSão Paulo8 & capital & São Paulo & 2019 & S005P & 0.3925847 & 0.21472169 & 0.5704477 & 0.231155467\\\\\n", "\tCuritiba4 & capital & Curitiba & 2019 & S005P & 0.2620324 & 0.03101129 & 0.4930534 & 0.449830155\\\\\n", "\tFlorianópolis4 & capital & Florianópolis & 2019 & S005P & 0.5773166 & 0.31513885 & 0.8394944 & 0.231704095\\\\\n", "\tPorto Alegre4 & capital & Porto Alegre & 2019 & S005P & 0.4038861 & 0.17145033 & 0.6363218 & 0.293626959\\\\\n", "\tCampo Grande4 & capital & Campo Grande & 2019 & S005P & 0.6491680 & 0.50650967 & 0.7918262 & 0.112122258\\\\\n", "\tCuiabá4 & capital & Cuiabá & 2019 & S005P & 0.6268727 & 0.37278925 & 0.8809562 & 0.206799253\\\\\n", "\tGoiânia4 & capital & Goiânia & 2019 & S005P & 0.5727847 & 0.32629493 & 0.8192745 & 0.219563127\\\\\n", "\tBrasília4 & capital & Brasília & 2019 & S005P & 0.6320122 & 0.47297955 & 0.7910448 & 0.128384529\\\\\n", "\tFundamental incompleto ou equivalente4 & gescol & Fundamental incompleto ou equivalente & 2019 & S005P & 0.9124938 & 0.87271915 & 0.9522685 & 0.022239685\\\\\n", "\tMédio incompleto ou equivalente4 & gescol & Médio incompleto ou equivalente & 2019 & S005P & 0.9012396 & 0.85482924 & 0.9476500 & 0.026274048\\\\\n", "\tSuperior incompleto ou equivalente4 & gescol & Superior incompleto ou equivalente & 2019 & S005P & 0.6802039 & 0.63250129 & 0.7279064 & 0.035781180\\\\\n", "\tSuperior completo4 & gescol & Superior completo & 2019 & S005P & 0.2032387 & 0.14803143 & 0.2584459 & 0.138593119\\\\\n", "\tS001PSim & total & Brasil & 2019 & S001P & 0.9802181 & 0.97357997 & 0.9868562 & 0.003455195\\\\\n", "\tS001PSim1 & total & Capital & 2019 & S001P & 0.9806496 & 0.97210024 & 0.9891990 & 0.004448070\\\\\n", "\tS002PSim & total & Brasil & 2019 & S002P & 0.9624012 & 0.94926198 & 0.9755404 & 0.006965703\\\\\n", "\tS002PSim1 & total & Capital & 2019 & S002P & 0.9341446 & 0.90502841 & 0.9632609 & 0.015902776\\\\\n", "\tS003PSim & total & Brasil & 2019 & S003P & 0.8814929 & 0.86308159 & 0.8999041 & 0.010656560\\\\\n", "\tS003PSim1 & total & Capital & 2019 & S003P & 0.8898081 & 0.85474618 & 0.9248701 & 0.020104431\\\\\n", "\tS004PSim & total & Brasil & 2019 & S004P & 0.8939233 & 0.87486687 & 0.9129797 & 0.010876579\\\\\n", "\tS004PSim1 & total & Capital & 2019 & S004P & 0.9086737 & 0.87852554 & 0.9388218 & 0.016927946\\\\\n", "\tS005PSim & total & Brasil & 2019 & S005P & 0.6712686 & 0.63830397 & 0.7042333 & 0.025055548\\\\\n", "\tS005PSim1 & total & Capital & 2019 & S005P & 0.5467601 & 0.49247810 & 0.6010420 & 0.050653646\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 395 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2019 | S001P | 0.9848342 | 0.9728009 | 0.9968675 | 6.234103e-03 |\n", "| Preta | raça | Preta | 2019 | S001P | 0.9706214 | 0.9496967 | 0.9915462 | 1.099923e-02 |\n", "| Parda | raça | Parda | 2019 | S001P | 0.9802893 | 0.9718436 | 0.9887350 | 4.395738e-03 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | S001P | 0.9748696 | 0.9634649 | 0.9862743 | 5.968842e-03 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | S001P | 0.9809000 | 0.9691323 | 0.9926676 | 6.120930e-03 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | S001P | 0.9900064 | 0.9798280 | 1.0001847 | 5.245551e-03 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | S001P | 0.9874788 | 0.9684689 | 1.0064888 | 9.822109e-03 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | S001P | 0.9850570 | 0.9559967 | 1.0141173 | 1.505188e-02 |\n", "| 18 a 24 anos | fx_idade_S | 18 a 24 anos | 2019 | S001P | 0.9780003 | 0.9636430 | 0.9923577 | 7.490081e-03 |\n", "| 25 a 29 anos | fx_idade_S | 25 a 29 anos | 2019 | S001P | 0.9761319 | 0.9599660 | 0.9922979 | 8.449762e-03 |\n", "| 30 a 39 anos | fx_idade_S | 30 a 39 anos | 2019 | S001P | 0.9872648 | 0.9801366 | 0.9943931 | 3.683855e-03 |\n", "| 40 anos ou mais | fx_idade_S | 40 anos ou mais | 2019 | S001P | 0.9584802 | 0.9286191 | 0.9883414 | 1.589556e-02 |\n", "| urbano | urb_rur | urbano | 2019 | S001P | 0.9822630 | 0.9752768 | 0.9892492 | 3.628817e-03 |\n", "| rural | urb_rur | rural | 2019 | S001P | 0.9690309 | 0.9495219 | 0.9885399 | 1.027184e-02 |\n", "| Rondônia | uf | Rondônia | 2019 | S001P | 0.9922432 | 0.9813513 | 1.0031351 | 5.600634e-03 |\n", "| Acre | uf | Acre | 2019 | S001P | 0.9400931 | 0.8740058 | 1.0061804 | 3.586734e-02 |\n", "| Amazonas | uf | Amazonas | 2019 | S001P | 0.9471638 | 0.9097590 | 0.9845686 | 2.014902e-02 |\n", "| Roraima | uf | Roraima | 2019 | S001P | 0.9381625 | 0.8778433 | 0.9984818 | 3.280420e-02 |\n", "| Pará | uf | Pará | 2019 | S001P | 0.9753771 | 0.9511006 | 0.9996535 | 1.269886e-02 |\n", "| Amapá | uf | Amapá | 2019 | S001P | 0.9382793 | 0.8674707 | 1.0090880 | 3.850401e-02 |\n", "| Tocantins | uf | Tocantins | 2019 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Maranhão | uf | Maranhão | 2019 | S001P | 0.9882002 | 0.9774606 | 0.9989399 | 5.544946e-03 |\n", "| Piauí | uf | Piauí | 2019 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Ceará | uf | Ceará | 2019 | S001P | 0.9908578 | 0.9730003 | 1.0087154 | 9.195250e-03 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2019 | S001P | 0.9599420 | 0.9283055 | 0.9915785 | 1.681495e-02 |\n", "| Paraíba | uf | Paraíba | 2019 | S001P | 0.9259756 | 0.8549651 | 0.9969862 | 3.912687e-02 |\n", "| Pernambuco | uf | Pernambuco | 2019 | S001P | 0.9653698 | 0.9289815 | 1.0017582 | 1.923183e-02 |\n", "| Alagoas | uf | Alagoas | 2019 | S001P | 0.9641940 | 0.9305357 | 0.9978523 | 1.781065e-02 |\n", "| Sergipe | uf | Sergipe | 2019 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 1.782482e-17 |\n", "| Bahia | uf | Bahia | 2019 | S001P | 0.9956594 | 0.9871376 | 1.0041812 | 4.366894e-03 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| João Pessoa4 | capital | João Pessoa | 2019 | S005P | 0.4891024 | 0.31333773 | 0.6648670 | 0.183351143 |\n", "| Recife4 | capital | Recife | 2019 | S005P | 0.6154032 | 0.35946656 | 0.8713398 | 0.212189839 |\n", "| Maceió4 | capital | Maceió | 2019 | S005P | 0.6770275 | 0.53995647 | 0.8140986 | 0.103297871 |\n", "| Aracaju4 | capital | Aracaju | 2019 | S005P | 0.5389670 | 0.28151970 | 0.7964143 | 0.243712643 |\n", "| Salvador4 | capital | Salvador | 2019 | S005P | 0.5306442 | 0.26607586 | 0.7952126 | 0.254381995 |\n", "| Belo Horizonte4 | capital | Belo Horizonte | 2019 | S005P | 0.3741457 | 0.20269372 | 0.5455976 | 0.233804895 |\n", "| Vitória4 | capital | Vitória | 2019 | S005P | 0.4852118 | 0.20101229 | 0.7694113 | 0.298843552 |\n", "| Rio de Janeiro9 | capital | Rio de Janeiro | 2019 | S005P | 0.5061534 | 0.27485324 | 0.7374535 | 0.233155491 |\n", "| São Paulo8 | capital | São Paulo | 2019 | S005P | 0.3925847 | 0.21472169 | 0.5704477 | 0.231155467 |\n", "| Curitiba4 | capital | Curitiba | 2019 | S005P | 0.2620324 | 0.03101129 | 0.4930534 | 0.449830155 |\n", "| Florianópolis4 | capital | Florianópolis | 2019 | S005P | 0.5773166 | 0.31513885 | 0.8394944 | 0.231704095 |\n", "| Porto Alegre4 | capital | Porto Alegre | 2019 | S005P | 0.4038861 | 0.17145033 | 0.6363218 | 0.293626959 |\n", "| Campo Grande4 | capital | Campo Grande | 2019 | S005P | 0.6491680 | 0.50650967 | 0.7918262 | 0.112122258 |\n", "| Cuiabá4 | capital | Cuiabá | 2019 | S005P | 0.6268727 | 0.37278925 | 0.8809562 | 0.206799253 |\n", "| Goiânia4 | capital | Goiânia | 2019 | S005P | 0.5727847 | 0.32629493 | 0.8192745 | 0.219563127 |\n", "| Brasília4 | capital | Brasília | 2019 | S005P | 0.6320122 | 0.47297955 | 0.7910448 | 0.128384529 |\n", "| Fundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2019 | S005P | 0.9124938 | 0.87271915 | 0.9522685 | 0.022239685 |\n", "| Médio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2019 | S005P | 0.9012396 | 0.85482924 | 0.9476500 | 0.026274048 |\n", "| Superior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2019 | S005P | 0.6802039 | 0.63250129 | 0.7279064 | 0.035781180 |\n", "| Superior completo4 | gescol | Superior completo | 2019 | S005P | 0.2032387 | 0.14803143 | 0.2584459 | 0.138593119 |\n", "| S001PSim | total | Brasil | 2019 | S001P | 0.9802181 | 0.97357997 | 0.9868562 | 0.003455195 |\n", "| S001PSim1 | total | Capital | 2019 | S001P | 0.9806496 | 0.97210024 | 0.9891990 | 0.004448070 |\n", "| S002PSim | total | Brasil | 2019 | S002P | 0.9624012 | 0.94926198 | 0.9755404 | 0.006965703 |\n", "| S002PSim1 | total | Capital | 2019 | S002P | 0.9341446 | 0.90502841 | 0.9632609 | 0.015902776 |\n", "| S003PSim | total | Brasil | 2019 | S003P | 0.8814929 | 0.86308159 | 0.8999041 | 0.010656560 |\n", "| S003PSim1 | total | Capital | 2019 | S003P | 0.8898081 | 0.85474618 | 0.9248701 | 0.020104431 |\n", "| S004PSim | total | Brasil | 2019 | S004P | 0.8939233 | 0.87486687 | 0.9129797 | 0.010876579 |\n", "| S004PSim1 | total | Capital | 2019 | S004P | 0.9086737 | 0.87852554 | 0.9388218 | 0.016927946 |\n", "| S005PSim | total | Brasil | 2019 | S005P | 0.6712686 | 0.63830397 | 0.7042333 | 0.025055548 |\n", "| S005PSim1 | total | Capital | 2019 | S005P | 0.5467601 | 0.49247810 | 0.6010420 | 0.050653646 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_S \n", "25 a 29 anos fx_idade_S \n", "30 a 39 anos fx_idade_S \n", "40 anos ou mais fx_idade_S \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "João Pessoa4 capital \n", "Recife4 capital \n", "Maceió4 capital \n", "Aracaju4 capital \n", "Salvador4 capital \n", "Belo Horizonte4 capital \n", "Vitória4 capital \n", "Rio de Janeiro9 capital \n", "São Paulo8 capital \n", "Curitiba4 capital \n", "Florianópolis4 capital \n", "Porto Alegre4 capital \n", "Campo Grande4 capital \n", "Cuiabá4 capital \n", "Goiânia4 capital \n", "Brasília4 capital \n", "Fundamental incompleto ou equivalente4 gescol \n", "Médio incompleto ou equivalente4 gescol \n", "Superior incompleto ou equivalente4 gescol \n", "Superior completo4 gescol \n", "S001PSim total \n", "S001PSim1 total \n", "S002PSim total \n", "S002PSim1 total \n", "S003PSim total \n", "S003PSim1 total \n", "S004PSim total \n", "S004PSim1 total \n", "S005PSim total \n", "S005PSim1 total \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "João Pessoa4 João Pessoa \n", "Recife4 Recife \n", "Maceió4 Maceió \n", "Aracaju4 Aracaju \n", "Salvador4 Salvador \n", "Belo Horizonte4 Belo Horizonte \n", "Vitória4 Vitória \n", "Rio de Janeiro9 Rio de Janeiro \n", "São Paulo8 São Paulo \n", "Curitiba4 Curitiba \n", "Florianópolis4 Florianópolis \n", "Porto Alegre4 Porto Alegre \n", "Campo Grande4 Campo Grande \n", "Cuiabá4 Cuiabá \n", "Goiânia4 Goiânia \n", "Brasília4 Brasília \n", "Fundamental incompleto ou equivalente4 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente4 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente4 Superior incompleto ou equivalente \n", "Superior completo4 Superior completo \n", "S001PSim Brasil \n", "S001PSim1 Capital \n", "S002PSim Brasil \n", "S002PSim1 Capital \n", "S003PSim Brasil \n", "S003PSim1 Capital \n", "S004PSim Brasil \n", "S004PSim1 Capital \n", "S005PSim Brasil \n", "S005PSim1 Capital \n", " Ano Indicador Sim LowerS \n", "Branca 2019 S001P 0.9848342 0.9728009 \n", "Preta 2019 S001P 0.9706214 0.9496967 \n", "Parda 2019 S001P 0.9802893 0.9718436 \n", "Até 1/2 SM 2019 S001P 0.9748696 0.9634649 \n", "1/2 até 1 SM 2019 S001P 0.9809000 0.9691323 \n", "1 até 2 SM 2019 S001P 0.9900064 0.9798280 \n", "2 até 3 SM 2019 S001P 0.9874788 0.9684689 \n", "Mais de 3 SM 2019 S001P 0.9850570 0.9559967 \n", "18 a 24 anos 2019 S001P 0.9780003 0.9636430 \n", "25 a 29 anos 2019 S001P 0.9761319 0.9599660 \n", "30 a 39 anos 2019 S001P 0.9872648 0.9801366 \n", "40 anos ou mais 2019 S001P 0.9584802 0.9286191 \n", "urbano 2019 S001P 0.9822630 0.9752768 \n", "rural 2019 S001P 0.9690309 0.9495219 \n", "Rondônia 2019 S001P 0.9922432 0.9813513 \n", "Acre 2019 S001P 0.9400931 0.8740058 \n", "Amazonas 2019 S001P 0.9471638 0.9097590 \n", "Roraima 2019 S001P 0.9381625 0.8778433 \n", "Pará 2019 S001P 0.9753771 0.9511006 \n", "Amapá 2019 S001P 0.9382793 0.8674707 \n", "Tocantins 2019 S001P 1.0000000 1.0000000 \n", "Maranhão 2019 S001P 0.9882002 0.9774606 \n", "Piauí 2019 S001P 1.0000000 1.0000000 \n", "Ceará 2019 S001P 0.9908578 0.9730003 \n", "Rio Grande do Norte 2019 S001P 0.9599420 0.9283055 \n", "Paraíba 2019 S001P 0.9259756 0.8549651 \n", "Pernambuco 2019 S001P 0.9653698 0.9289815 \n", "Alagoas 2019 S001P 0.9641940 0.9305357 \n", "Sergipe 2019 S001P 1.0000000 1.0000000 \n", "Bahia 2019 S001P 0.9956594 0.9871376 \n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "João Pessoa4 2019 S005P 0.4891024 0.31333773\n", "Recife4 2019 S005P 0.6154032 0.35946656\n", "Maceió4 2019 S005P 0.6770275 0.53995647\n", "Aracaju4 2019 S005P 0.5389670 0.28151970\n", "Salvador4 2019 S005P 0.5306442 0.26607586\n", "Belo Horizonte4 2019 S005P 0.3741457 0.20269372\n", "Vitória4 2019 S005P 0.4852118 0.20101229\n", "Rio de Janeiro9 2019 S005P 0.5061534 0.27485324\n", "São Paulo8 2019 S005P 0.3925847 0.21472169\n", "Curitiba4 2019 S005P 0.2620324 0.03101129\n", "Florianópolis4 2019 S005P 0.5773166 0.31513885\n", "Porto Alegre4 2019 S005P 0.4038861 0.17145033\n", "Campo Grande4 2019 S005P 0.6491680 0.50650967\n", "Cuiabá4 2019 S005P 0.6268727 0.37278925\n", "Goiânia4 2019 S005P 0.5727847 0.32629493\n", "Brasília4 2019 S005P 0.6320122 0.47297955\n", "Fundamental incompleto ou equivalente4 2019 S005P 0.9124938 0.87271915\n", "Médio incompleto ou equivalente4 2019 S005P 0.9012396 0.85482924\n", "Superior incompleto ou equivalente4 2019 S005P 0.6802039 0.63250129\n", "Superior completo4 2019 S005P 0.2032387 0.14803143\n", "S001PSim 2019 S001P 0.9802181 0.97357997\n", "S001PSim1 2019 S001P 0.9806496 0.97210024\n", "S002PSim 2019 S002P 0.9624012 0.94926198\n", "S002PSim1 2019 S002P 0.9341446 0.90502841\n", "S003PSim 2019 S003P 0.8814929 0.86308159\n", "S003PSim1 2019 S003P 0.8898081 0.85474618\n", "S004PSim 2019 S004P 0.8939233 0.87486687\n", "S004PSim1 2019 S004P 0.9086737 0.87852554\n", "S005PSim 2019 S005P 0.6712686 0.63830397\n", "S005PSim1 2019 S005P 0.5467601 0.49247810\n", " UpperS cvS \n", "Branca 0.9968675 6.234103e-03\n", "Preta 0.9915462 1.099923e-02\n", "Parda 0.9887350 4.395738e-03\n", "Até 1/2 SM 0.9862743 5.968842e-03\n", "1/2 até 1 SM 0.9926676 6.120930e-03\n", "1 até 2 SM 1.0001847 5.245551e-03\n", "2 até 3 SM 1.0064888 9.822109e-03\n", "Mais de 3 SM 1.0141173 1.505188e-02\n", "18 a 24 anos 0.9923577 7.490081e-03\n", "25 a 29 anos 0.9922979 8.449762e-03\n", "30 a 39 anos 0.9943931 3.683855e-03\n", "40 anos ou mais 0.9883414 1.589556e-02\n", "urbano 0.9892492 3.628817e-03\n", "rural 0.9885399 1.027184e-02\n", "Rondônia 1.0031351 5.600634e-03\n", "Acre 1.0061804 3.586734e-02\n", "Amazonas 0.9845686 2.014902e-02\n", "Roraima 0.9984818 3.280420e-02\n", "Pará 0.9996535 1.269886e-02\n", "Amapá 1.0090880 3.850401e-02\n", "Tocantins 1.0000000 0.000000e+00\n", "Maranhão 0.9989399 5.544946e-03\n", "Piauí 1.0000000 0.000000e+00\n", "Ceará 1.0087154 9.195250e-03\n", "Rio Grande do Norte 0.9915785 1.681495e-02\n", "Paraíba 0.9969862 3.912687e-02\n", "Pernambuco 1.0017582 1.923183e-02\n", "Alagoas 0.9978523 1.781065e-02\n", "Sergipe 1.0000000 1.782482e-17\n", "Bahia 1.0041812 4.366894e-03\n", "⋮ ⋮ ⋮ \n", "João Pessoa4 0.6648670 0.183351143 \n", "Recife4 0.8713398 0.212189839 \n", "Maceió4 0.8140986 0.103297871 \n", "Aracaju4 0.7964143 0.243712643 \n", "Salvador4 0.7952126 0.254381995 \n", "Belo Horizonte4 0.5455976 0.233804895 \n", "Vitória4 0.7694113 0.298843552 \n", "Rio de Janeiro9 0.7374535 0.233155491 \n", "São Paulo8 0.5704477 0.231155467 \n", "Curitiba4 0.4930534 0.449830155 \n", "Florianópolis4 0.8394944 0.231704095 \n", "Porto Alegre4 0.6363218 0.293626959 \n", "Campo Grande4 0.7918262 0.112122258 \n", "Cuiabá4 0.8809562 0.206799253 \n", "Goiânia4 0.8192745 0.219563127 \n", "Brasília4 0.7910448 0.128384529 \n", "Fundamental incompleto ou equivalente4 0.9522685 0.022239685 \n", "Médio incompleto ou equivalente4 0.9476500 0.026274048 \n", "Superior incompleto ou equivalente4 0.7279064 0.035781180 \n", "Superior completo4 0.2584459 0.138593119 \n", "S001PSim 0.9868562 0.003455195 \n", "S001PSim1 0.9891990 0.004448070 \n", "S002PSim 0.9755404 0.006965703 \n", "S002PSim1 0.9632609 0.015902776 \n", "S003PSim 0.8999041 0.010656560 \n", "S003PSim1 0.9248701 0.020104431 \n", "S004PSim 0.9129797 0.010876579 \n", "S004PSim1 0.9388218 0.016927946 \n", "S005PSim 0.7042333 0.025055548 \n", "S005PSim1 0.6010420 0.050653646 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo S 2019" ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 4 }