{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - S 2013 Pré-natal - Parte 1" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 222385
  2. 1000
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 222385\n", "\\item 1000\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 222385\n", "2. 1000\n", "\n", "\n" ], "text/plain": [ "[1] 222385 1000" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.004156 0.243959 0.521557 1.000000 1.147413 31.179597 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos para o módulo S e calculando peso amostral - summary de verificação\n", "pns2013.1<- %>% filter(M001==1) \n", "pns2013.1<-pns2013.1 %>% mutate(peso_morador_selec=((V00291*(60202/145572211))))\n", "pns2013.1<-pns2013.1 %>% filter(!is.na(peso_morador_selec))\n", "summary(pns2013.1$peso_morador_selec)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
1851
Não
67
NA's
58284
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1851\n", "\\item[Não] 67\n", "\\item[NA's] 58284\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1851Não\n", ": 67NA's\n", ": 58284\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1851 67 58284 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
1785
Não
66
NA's
58351
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1785\n", "\\item[Não] 66\n", "\\item[NA's] 58351\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1785Não\n", ": 66NA's\n", ": 58351\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1785 66 58351 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
1527
Não
324
NA's
58351
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1527\n", "\\item[Não] 324\n", "\\item[NA's] 58351\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1527Não\n", ": 324NA's\n", ": 58351\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1527 324 58351 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
1494
Não
357
NA's
58351
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1494\n", "\\item[Não] 357\n", "\\item[NA's] 58351\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1494Não\n", ": 357NA's\n", ": 58351\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1494 357 58351 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
1401
Não
450
NA's
58351
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 1401\n", "\\item[Não] 450\n", "\\item[NA's] 58351\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 1401Não\n", ": 450NA's\n", ": 58351\n", "\n" ], "text/plain": [ " Sim Não NA's \n", " 1401 450 58351 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Desfechos - Indicadores\n", "\n", "# 1. Proporção de mulheres que realizaram pré-natal - S001P.\n", "pns2013.1$S001P <- NA\n", "pns2013.1$S001P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==2] <- 2\n", "pns2013.1$S001P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 ] <- 1\n", "pns2013.1$S001P<-factor(pns2013.1$S001P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2013.1$S001P)\n", "\n", "# 2. Proporção de mulheres que realizaram pré-natal e que possuíam caderneta/cartão da gestante - S002P.\n", "pns2013.1$S002P <- NA\n", "pns2013.1$S002P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 ] <- 2\n", "pns2013.1$S002P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 & pns2013.1$S002==1] <- 1\n", "pns2013.1$S002P<-factor(pns2013.1$S002P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2013.1$S002P)\n", "\n", "# 3. Proporção de mulheres que iniciaram pré-natal com menos de 13 semanas ou até 3 meses de gestação - S003P.\n", "pns2013.1$S003P <- NA\n", "pns2013.1$S003P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 ] <- 2\n", "pns2013.1$S003P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 & pns2013.1$S003 <13] <- 1\n", "pns2013.1$S003P<-factor(pns2013.1$S003P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2013.1$S003P)\n", "\n", "# 4. Proporção de mulheres que tiveram 6 ou mais consultas de pré-natal entre as gestantes com parto a termo ou pós-termo) - S004P.\n", "pns2013.1$S004P <- NA\n", "pns2013.1$S004P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 ] <- 2\n", "pns2013.1$S004P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 & pns2013.1$S004 >=6] <- 1\n", "pns2013.1$S004P<-factor(pns2013.1$S004P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2013.1$S004P)\n", "\n", "# 5. Proporção de mulheres que realizaram a maioria das consultas de pré-natal em estabelecimentos públicos de saúde - S005P.\n", "pns2013.1$S005P <- NA\n", "pns2013.1$S005P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1] <- 2\n", "pns2013.1$S005P[pns2013.1$C006==2 & pns2013.1$C008>=18 & pns2013.1$S001==1 & pns2013.1$S005 <=3] <- 1\n", "pns2013.1$S005P<-factor(pns2013.1$S005P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2013.1$S005P)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
urbano
49245
rural
10957
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[urbano] 49245\n", "\\item[rural] 10957\n", "\\end{description*}\n" ], "text/markdown": [ "urbano\n", ": 49245rural\n", ": 10957\n", "\n" ], "text/plain": [ "urbano rural \n", " 49245 10957 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2013.1 <- pns2013.1 %>% mutate(Sit_Urbano_Rural=V0026)\n", "pns2013.1$Sit_Urbano_Rural<-factor(pns2013.1$Sit_Urbano_Rural, levels=c(1,2), labels=c(\"urbano\", \"rural\"))\n", "summary(pns2013.1$Sit_Urbano_Rural)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sexo" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Masculino
25920
Feminino
34282
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Masculino] 25920\n", "\\item[Feminino] 34282\n", "\\end{description*}\n" ], "text/markdown": [ "Masculino\n", ": 25920Feminino\n", ": 34282\n", "\n" ], "text/plain": [ "Masculino Feminino \n", " 25920 34282 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Sexo\n", "pns2013.1 <- pns2013.1 %>% mutate(Sexo=C006)\n", "pns2013.1$Sexo<-factor(pns2013.1$Sexo, levels=c(1,2), labels=c(\"Masculino\", \"Feminino\"))\n", "summary(pns2013.1$Sexo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
1694
Acre
1814
Amazonas
2586
Roraima
1591
Pará
2004
Amapá
1332
Tocantins
1515
Maranhão
1774
Piauí
1804
Ceará
2560
Rio Grande do Norte
1691
Paraíba
1943
Pernambuco
2591
Alagoas
1748
Sergipe
1553
Bahia
2641
Minas Gerais
3779
Espírito Santo
1724
Rio de Janeiro
3486
São Paulo
5305
Paraná
3012
Santa Catarina
1623
Rio Grande do Sul
2913
Mato Grosso do Sul
1809
Mato Grosso
1476
Goiás
2423
Distrito Federal
1811
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 1694\n", "\\item[Acre] 1814\n", "\\item[Amazonas] 2586\n", "\\item[Roraima] 1591\n", "\\item[Pará] 2004\n", "\\item[Amapá] 1332\n", "\\item[Tocantins] 1515\n", "\\item[Maranhão] 1774\n", "\\item[Piauí] 1804\n", "\\item[Ceará] 2560\n", "\\item[Rio Grande do Norte] 1691\n", "\\item[Paraíba] 1943\n", "\\item[Pernambuco] 2591\n", "\\item[Alagoas] 1748\n", "\\item[Sergipe] 1553\n", "\\item[Bahia] 2641\n", "\\item[Minas Gerais] 3779\n", "\\item[Espírito Santo] 1724\n", "\\item[Rio de Janeiro] 3486\n", "\\item[São Paulo] 5305\n", "\\item[Paraná] 3012\n", "\\item[Santa Catarina] 1623\n", "\\item[Rio Grande do Sul] 2913\n", "\\item[Mato Grosso do Sul] 1809\n", "\\item[Mato Grosso] 1476\n", "\\item[Goiás] 2423\n", "\\item[Distrito Federal] 1811\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 1694Acre\n", ": 1814Amazonas\n", ": 2586Roraima\n", ": 1591Pará\n", ": 2004Amapá\n", ": 1332Tocantins\n", ": 1515Maranhão\n", ": 1774Piauí\n", ": 1804Ceará\n", ": 2560Rio Grande do Norte\n", ": 1691Paraíba\n", ": 1943Pernambuco\n", ": 2591Alagoas\n", ": 1748Sergipe\n", ": 1553Bahia\n", ": 2641Minas Gerais\n", ": 3779Espírito Santo\n", ": 1724Rio de Janeiro\n", ": 3486São Paulo\n", ": 5305Paraná\n", ": 3012Santa Catarina\n", ": 1623Rio Grande do Sul\n", ": 2913Mato Grosso do Sul\n", ": 1809Mato Grosso\n", ": 1476Goiás\n", ": 2423Distrito Federal\n", ": 1811\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 1694 1814 2586 1591 \n", " Pará Amapá Tocantins Maranhão \n", " 2004 1332 1515 1774 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 1804 2560 1691 1943 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 2591 1748 1553 2641 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 3779 1724 3486 5305 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 3012 1623 2913 1809 \n", " Mato Grosso Goiás Distrito Federal \n", " 1476 2423 1811 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2013.1 <- pns2013.1 %>% mutate(Unidades_da_Federacao=V0001)\n", "pns2013.1$Unidades_da_Federacao<-factor(pns2013.1$Unidades_da_Federacao, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2013.1$Unidades_da_Federacao)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
12536
Nordeste
18305
Sudeste
14294
Sul
7548
Centro-Oeste
7519
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 12536\n", "\\item[Nordeste] 18305\n", "\\item[Sudeste] 14294\n", "\\item[Sul] 7548\n", "\\item[Centro-Oeste] 7519\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 12536Nordeste\n", ": 18305Sudeste\n", ": 14294Sul\n", ": 7548Centro-Oeste\n", ": 7519\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 12536 18305 14294 7548 7519 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2013.1 <- pns2013.1 %>% mutate(GrandesRegioes = fct_collapse(Unidades_da_Federacao, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n", "summary(pns2013.1$GrandesRegioes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
1694
Rio Branco
1814
Manaus
2586
Boa Vista
1591
Belém
2004
Macapá
1332
Palmas
1515
São Luís
1774
Teresina
1804
Fortaleza
2560
Natal
1691
João Pessoa
1943
Recife
2591
Maceió
1748
Aracaju
1553
Salvador
2641
Belo Horizonte
3779
Vitória
1724
Rio de Janeiro
3486
São Paulo
5305
Curitiba
3012
Florianópolis
1623
Porto Alegre
2913
Campo Grande
1809
Cuiabá
1476
Goiânia
2423
Brasília
1811
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 1694\n", "\\item[Rio Branco] 1814\n", "\\item[Manaus] 2586\n", "\\item[Boa Vista] 1591\n", "\\item[Belém] 2004\n", "\\item[Macapá] 1332\n", "\\item[Palmas] 1515\n", "\\item[São Luís] 1774\n", "\\item[Teresina] 1804\n", "\\item[Fortaleza] 2560\n", "\\item[Natal] 1691\n", "\\item[João Pessoa] 1943\n", "\\item[Recife] 2591\n", "\\item[Maceió] 1748\n", "\\item[Aracaju] 1553\n", "\\item[Salvador] 2641\n", "\\item[Belo Horizonte] 3779\n", "\\item[Vitória] 1724\n", "\\item[Rio de Janeiro] 3486\n", "\\item[São Paulo] 5305\n", "\\item[Curitiba] 3012\n", "\\item[Florianópolis] 1623\n", "\\item[Porto Alegre] 2913\n", "\\item[Campo Grande] 1809\n", "\\item[Cuiabá] 1476\n", "\\item[Goiânia] 2423\n", "\\item[Brasília] 1811\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 1694Rio Branco\n", ": 1814Manaus\n", ": 2586Boa Vista\n", ": 1591Belém\n", ": 2004Macapá\n", ": 1332Palmas\n", ": 1515São Luís\n", ": 1774Teresina\n", ": 1804Fortaleza\n", ": 2560Natal\n", ": 1691João Pessoa\n", ": 1943Recife\n", ": 2591Maceió\n", ": 1748Aracaju\n", ": 1553Salvador\n", ": 2641Belo Horizonte\n", ": 3779Vitória\n", ": 1724Rio de Janeiro\n", ": 3486São Paulo\n", ": 5305Curitiba\n", ": 3012Florianópolis\n", ": 1623Porto Alegre\n", ": 2913Campo Grande\n", ": 1809Cuiabá\n", ": 1476Goiânia\n", ": 2423Brasília\n", ": 1811\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 1694 1814 2586 1591 2004 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 1332 1515 1774 1804 2560 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 1691 1943 2591 1748 1553 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 2641 3779 1724 3486 5305 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 3012 1623 2913 1809 1476 \n", " Goiânia Brasília \n", " 2423 1811 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2013.1<- pns2013.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federacao,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2013.1$Capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
18 a 24 anos
7823
25 a 29 anos
6498
30 a 39 anos
14269
40 anos ou mais
31612
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[18 a 24 anos] 7823\n", "\\item[25 a 29 anos] 6498\n", "\\item[30 a 39 anos] 14269\n", "\\item[40 anos ou mais] 31612\n", "\\end{description*}\n" ], "text/markdown": [ "18 a 24 anos\n", ": 782325 a 29 anos\n", ": 649830 a 39 anos\n", ": 1426940 anos ou mais\n", ": 31612\n", "\n" ], "text/plain": [ " 18 a 24 anos 25 a 29 anos 30 a 39 anos 40 anos ou mais \n", " 7823 6498 14269 31612 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Faixas Etárias\n", "pns2013.1 <- pns2013.1 %>% mutate(fx_idade_S=cut(C008,\n", " breaks = c(18,25,30,40,120),\n", " labels = c(\"18 a 24 anos\", \"25 a 29 anos\", \"30 a 39 anos\", \"40 anos ou mais\"), \n", " ordered_result = TRUE, right = FALSE))\n", "summary(pns2013.1$fx_idade_S)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
24106
Preta
5631
Parda
29512
NA's
953
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 24106\n", "\\item[Preta] 5631\n", "\\item[Parda] 29512\n", "\\item[NA's] 953\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 24106Preta\n", ": 5631Parda\n", ": 29512NA's\n", ": 953\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 24106 5631 29512 953 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Raça\n", "pns2013.1 <- pns2013.1 %>% mutate(Raca= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "pns2013.1$Raca<-factor(pns2013.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "summary(pns2013.1$Raca)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
14256
1/2 até 1 SM
17504
1 até 2 SM
15493
2 até 3 SM
5335
Mais de 3 SM
7603
NA's
11
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 14256\n", "\\item[1/2 até 1 SM] 17504\n", "\\item[1 até 2 SM] 15493\n", "\\item[2 até 3 SM] 5335\n", "\\item[Mais de 3 SM] 7603\n", "\\item[NA's] 11\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 142561/2 até 1 SM\n", ": 175041 até 2 SM\n", ": 154932 até 3 SM\n", ": 5335Mais de 3 SM\n", ": 7603NA's\n", ": 11\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 14256 17504 15493 5335 7603 11 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Rendimento domiciliar per capita\n", "pns2013.1 <- pns2013.1 %>% mutate(rend_per_capita=cut(VDF003,\n", " breaks = c(-Inf,339, 678, 1356, 2034, Inf),\n", " labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\"2 até 3 SM\",\"Mais de 3 SM\"), \n", " ordered_result = TRUE, right = TRUE, na.exclude= TRUE))\n", "summary(pns2013.1$rend_per_capita)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Escolaridade" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Fundamental incompleto ou equivalente
24083
Médio incompleto ou equivalente
9215
Superior incompleto ou equivalente
19149
Superior completo
7755
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Fundamental incompleto ou equivalente] 24083\n", "\\item[Médio incompleto ou equivalente] 9215\n", "\\item[Superior incompleto ou equivalente] 19149\n", "\\item[Superior completo] 7755\n", "\\end{description*}\n" ], "text/markdown": [ "Fundamental incompleto ou equivalente\n", ": 24083Médio incompleto ou equivalente\n", ": 9215Superior incompleto ou equivalente\n", ": 19149Superior completo\n", ": 7755\n", "\n" ], "text/plain": [ "Fundamental incompleto ou equivalente Médio incompleto ou equivalente \n", " 24083 9215 \n", " Superior incompleto ou equivalente Superior completo \n", " 19149 7755 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Escolaridade\n", "pns2013.1 <- pns2013.1 %>% mutate(gescol = ifelse(VDD004A %in% 1:2, 1, \n", " ifelse(VDD004A%in% 3:4, 2, \n", " ifelse(VDD004A%in% 5:6, 3,4\n", " ))))\n", "pns2013.1$gescol<-factor(pns2013.1$gescol, levels=c(1,2,3,4), \n", " labels=c(\"Fundamental incompleto ou equivalente\",\"Médio incompleto ou equivalente\",\n", " \"Superior incompleto ou equivalente\",\"Superior completo\"))\n", "\n", "summary(pns2013.1$gescol)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec C008 \n", " Min. :1110011 Min. :1100001 Min. : 0.004156 Min. : 18.00 \n", " 1st Qu.:2210013 1st Qu.:2200075 1st Qu.: 0.243959 1st Qu.: 30.00 \n", " Median :2951023 Median :2900192 Median : 0.521557 Median : 41.00 \n", " Mean :3035353 Mean :3007819 Mean : 1.000000 Mean : 43.31 \n", " 3rd Qu.:4110111 3rd Qu.:4100002 3rd Qu.: 1.147413 3rd Qu.: 55.00 \n", " Max. :5310220 Max. :5300180 Max. :31.179597 Max. :101.00 \n", " \n", " C006 C009 V0031 Sit_Urbano_Rural\n", " Min. :1.000 Min. :1.00 Min. :1.000 urbano:49245 \n", " 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.000 rural :10957 \n", " Median :2.000 Median :3.00 Median :2.000 \n", " Mean :1.569 Mean :2.61 Mean :2.308 \n", " 3rd Qu.:2.000 3rd Qu.:4.00 3rd Qu.:4.000 \n", " Max. :2.000 Max. :9.00 Max. :4.000 \n", " \n", " Unidades_da_Federacao GrandesRegioes Capital \n", " São Paulo : 5305 Norte :12536 São Paulo : 5305 \n", " Minas Gerais : 3779 Nordeste :18305 Belo Horizonte: 3779 \n", " Rio de Janeiro : 3486 Sudeste :14294 Rio de Janeiro: 3486 \n", " Paraná : 3012 Sul : 7548 Curitiba : 3012 \n", " Rio Grande do Sul: 2913 Centro-Oeste: 7519 Porto Alegre : 2913 \n", " Bahia : 2641 Salvador : 2641 \n", " (Other) :39066 (Other) :39066 \n", " fx_idade_S Raca rend_per_capita \n", " 18 a 24 anos : 7823 Branca:24106 Até 1/2 SM :14256 \n", " 25 a 29 anos : 6498 Preta : 5631 1/2 até 1 SM:17504 \n", " 30 a 39 anos :14269 Parda :29512 1 até 2 SM :15493 \n", " 40 anos ou mais:31612 NA's : 953 2 até 3 SM : 5335 \n", " Mais de 3 SM: 7603 \n", " NA's : 11 \n", " \n", " gescol S001P S002P \n", " Fundamental incompleto ou equivalente:24083 Sim : 1851 Sim : 1785 \n", " Médio incompleto ou equivalente : 9215 Não : 67 Não : 66 \n", " Superior incompleto ou equivalente :19149 NA's:58284 NA's:58351 \n", " Superior completo : 7755 \n", " \n", " \n", " \n", " S003P S004P S005P S001 \n", " Sim : 1527 Sim : 1494 Sim : 1401 Min. :1.00 \n", " Não : 324 Não : 357 Não : 450 1st Qu.:1.00 \n", " NA's:58351 NA's:58351 NA's:58351 Median :1.00 \n", " Mean :1.03 \n", " 3rd Qu.:1.00 \n", " Max. :2.00 \n", " NA's :58284 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "# Selecionando variáveis para cálculo de indicadores no survey\n", "pns2013Ssurvey<- pns2013.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \"C008\", \"C006\", \"C009\", \"V0031\", \"Sit_Urbano_Rural\", \"Unidades_da_Federacao\", \"GrandesRegioes\", \"Capital\", \"fx_idade_S\", \"Raca\", \"rend_per_capita\", \"gescol\", \"S001P\", \"S002P\", \"S003P\", \"S004P\", \"S005P\", \"S001\")\n", "summary(pns2013Ssurvey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo S 2013 - Parte 1" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "# Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2013Ssurvey, file.path(diretorio_saida, \"pns2013Ssurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_morador_selec C008 \n", " Min. :1110011 Min. :1100001 Min. : 0.004156 Min. : 18.00 \n", " 1st Qu.:2210013 1st Qu.:2200075 1st Qu.: 0.243959 1st Qu.: 30.00 \n", " Median :2951023 Median :2900192 Median : 0.521557 Median : 41.00 \n", " Mean :3035353 Mean :3007819 Mean : 1.000000 Mean : 43.31 \n", " 3rd Qu.:4110111 3rd Qu.:4100002 3rd Qu.: 1.147413 3rd Qu.: 55.00 \n", " Max. :5310220 Max. :5300180 Max. :31.179597 Max. :101.00 \n", " \n", " C006 C009 V0031 Sit_Urbano_Rural\n", " Min. :1.000 Min. :1.00 Min. :1.000 urbano:49245 \n", " 1st Qu.:1.000 1st Qu.:1.00 1st Qu.:1.000 rural :10957 \n", " Median :2.000 Median :3.00 Median :2.000 \n", " Mean :1.569 Mean :2.61 Mean :2.308 \n", " 3rd Qu.:2.000 3rd Qu.:4.00 3rd Qu.:4.000 \n", " Max. :2.000 Max. :9.00 Max. :4.000 \n", " \n", " Unidades_da_Federacao GrandesRegioes Capital \n", " São Paulo : 5305 Norte :12536 São Paulo : 5305 \n", " Minas Gerais : 3779 Nordeste :18305 Belo Horizonte: 3779 \n", " Rio de Janeiro : 3486 Sudeste :14294 Rio de Janeiro: 3486 \n", " Paraná : 3012 Sul : 7548 Curitiba : 3012 \n", " Rio Grande do Sul: 2913 Centro-Oeste: 7519 Porto Alegre : 2913 \n", " Bahia : 2641 Salvador : 2641 \n", " (Other) :39066 (Other) :39066 \n", " fx_idade_S Raca rend_per_capita \n", " 18 a 24 anos : 7823 Branca:24106 Até 1/2 SM :14256 \n", " 25 a 29 anos : 6498 Preta : 5631 1/2 até 1 SM:17504 \n", " 30 a 39 anos :14269 Parda :29512 1 até 2 SM :15493 \n", " 40 anos ou mais:31612 NA's : 953 2 até 3 SM : 5335 \n", " Mais de 3 SM: 7603 \n", " NA's : 11 \n", " \n", " gescol S001P S002P \n", " Fundamental incompleto ou equivalente:24083 Sim : 1851 Sim : 1785 \n", " Médio incompleto ou equivalente : 9215 Não : 67 Não : 66 \n", " Superior incompleto ou equivalente :19149 NA's:58284 NA's:58351 \n", " Superior completo : 7755 \n", " \n", " \n", " \n", " S003P S004P S005P S001 \n", " Sim : 1527 Sim : 1494 Sim : 1401 Min. :1.00 \n", " Não : 324 Não : 357 Não : 450 1st Qu.:1.00 \n", " NA's:58351 NA's:58351 NA's:58351 Median :1.00 \n", " Mean :1.03 \n", " 3rd Qu.:1.00 \n", " Max. :2.00 \n", " NA's :58284 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#survey design\n", "pns2013Ssurvey<- pns2013.1 %>% \n", " select(\"V0024\",\"UPA_PNS\",\"peso_morador_selec\", \n", " \"C008\", \"C006\", \"C009\", \"V0031\", \"Sit_Urbano_Rural\",\n", " \"Unidades_da_Federacao\", \"GrandesRegioes\", \"Capital\",\n", " \"fx_idade_S\", \"Raca\", \"rend_per_capita\", \"gescol\", \n", " \"S001P\", \"S002P\", \"S003P\", \"S004P\", \"S005P\", \"S001\")\n", "summary(pns2013Ssurvey)" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "# survey design\n", "desPNS=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_morador_selec, nest=TRUE,\n", " data=pns2013Ssurvey)" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "# survey design S001P\n", "desPNSS001P=subset(desPNS, C006==2 & C008>=18 & S001>0)\n", "desPNSS001P_C=subset(desPNS, C006==2 & C008>=18 & S001>0 & V0031==1)\n", "desPNSS001P_R=subset(desPNS, C006==2 & C008>=18 & S001>0 & !is.na(Raca))" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "# survey design S002P, S003P, S004P, S005P\n", "desPNSS002P=subset(desPNS, C006==2 & C008>=18 & S001==1)\n", "desPNSS002P_C=subset(desPNS, C006==2 & C008>=18 & S001==1 & V0031==1)\n", "desPNSS002P_R=subset(desPNS, C006==2 & C008>=18 & S001==1 & !is.na(Raca))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Criação da tabela de indicadores\n", "Essa tabela é responsável por unir os indicadores no formato do painel de indicadores" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores = data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "ListaIndicadores = c(~S001P, ~S002P, ~S003P, ~S004P, ~S005P)\n", "ListaIndicadoresTexto = c(\"S001P\", \"S002P\", \"S003P\", \"S004P\", \"S005P\" )\n", "ListaTotais = c('Brasil','Capital')\n", "Ano <- \"2013\"" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "ListaDominiosS001 = c(~Raca,~rend_per_capita,~fx_idade_S,~Sit_Urbano_Rural,\n", " ~Unidades_da_Federacao,~GrandesRegioes,~Capital,~gescol) \n", "ListaDominiosTextoS001= c(\"raça\",\"rend_per_capita\",\"fx_idade_S\",\"urb_rur\",\"uf\",\"região\",\n", " \"capital\",\"gescol\") " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando a tabela pela abrangência total" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [], "source": [ "# Cálculo dos indicadores usando o pacote survey \n", "i <- 0\n", "for( indicador in ListaIndicadores){\n", " i <- i + 1; j <- 1\n", " if (ListaIndicadoresTexto[i]== \"S001P\" | ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " ListaDominios<-ListaDominiosS001\n", " ListaDominiosTexto<-ListaDominiosTextoS001\n", " } else {\n", " ListaDominios<-ListaDominiosS001\n", " ListaDominiosTexto<-ListaDominiosTextoS001\n", " }\n", " #Para cada dominio\n", " for (dominio in ListaDominios){\n", " #design especifico para capital que é subconjunto do dataframe total\n", " if (ListaDominiosTexto[j]==\"capital\"){\n", " #designs especificos por variavel que são subconjuntos do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P_C , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if (ListaIndicadoresTexto[i]== \"S001P\") {\n", "dataframe_indicador<-svyby( indicador , dominio , desPNSS001P_C , svymean,vartype= c(\"ci\",\"cv\"))\n", " } \n", " #Uso design do subconjunto para raça/cor que inclui preta,branca e parda as outras \n", " #não possuiam dados suficientes para os dominios dos indicadores\n", " } else if (ListaDominiosTexto[j]==\"raça\"){\n", " if (ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS001P_R , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #design geral para o subconjunto maior que 18 anos \n", " } else {\n", " if (ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS002P , svymean,vartype= c(\"ci\",\"cv\"))\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador<-svyby( indicador , dominio , desPNSS001P , svymean,vartype= c(\"ci\",\"cv\"))\n", " } \n", " }\n", "# União do dataframe de indicadores no formato do painel disponibilizado para PNS\n", "dataframe_indicador<-data.frame(dataframe_indicador)\n", " colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Nao\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n", " dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n", " dataframe_indicador$Ano <- Ano\n", " dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n", " matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n", " j <- j + 1\n", " }\n", "}" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "i <- 0\n", "for(indicador in ListaIndicadores){\n", " i <- i+1\n", " for(total in ListaTotais){\n", " dataframe_indicador <- data.frame()\n", " dataframe_indicador_S <- data.frame()\n", " dataframe_indicador_N <- data.frame()\n", " if (total == \"Capital\"){\n", " #Indicadores que são subconjunto do dataset total\n", " if (ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS002P_C)\n", " } else if\n", "(ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS001P_C)\n", " } \n", " } else {\n", " if (ListaIndicadoresTexto[i]== \"S002P\" | ListaIndicadoresTexto[i]== \"S003P\" | ListaIndicadoresTexto[i]== \"S004P\" | ListaIndicadoresTexto[i]== \"S005P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS002P)\n", " } else if (ListaIndicadoresTexto[i]== \"S001P\"){\n", " dataframe_indicador <- svymean(indicador,desPNSS001P)\n", " } \n", " }\n", " intervalo_confianca <- confint(dataframe_indicador)\n", " coeficiente_variacao <- cv(dataframe_indicador)\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n", " \n", " dataframe_indicador <- dataframe_indicador %>% \n", " select('mean','X2.5..','X97.5..',coeficiente_variacao) \n", " dataframe_indicador_S <- dataframe_indicador %>% \n", " slice(1)\n", " \n", " colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select('Sim','LowerS','UpperS','cvS')\n", " dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n", " \n", " dataframe_indicador_S$abr_tipo <- \"total\"\n", " dataframe_indicador_S$abr_nome <- total\n", " dataframe_indicador_S$Ano <- Ano\n", " \n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n", " \n", " matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n", " }\n", "}" ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 10 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><chr><chr><chr><dbl><dbl><dbl><dbl>
S001PSimtotalBrasil 2013S001P0.97352580.96379440.98325730.005100147
S001PSim1totalCapital2013S001P0.96848750.95435750.98261750.007443900
S002PSimtotalBrasil 2013S002P0.95533840.93958920.97108770.008411119
S002PSim1totalCapital2013S002P0.94969280.92543720.97394840.013031097
S003PSimtotalBrasil 2013S003P0.83733940.80819900.86647970.017756001
S003PSim1totalCapital2013S003P0.83876460.80318550.87434370.021642473
S004PSimtotalBrasil 2013S004P0.83717070.80890440.86543690.017226844
S004PSim1totalCapital2013S004P0.83345190.79719840.86970530.022193247
S005PSimtotalBrasil 2013S005P0.71835210.68082400.75588010.026654517
S005PSim1totalCapital2013S005P0.64584120.59260370.69907870.042057542
\n" ], "text/latex": [ "A data.frame: 10 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tS001PSim & total & Brasil & 2013 & S001P & 0.9735258 & 0.9637944 & 0.9832573 & 0.005100147\\\\\n", "\tS001PSim1 & total & Capital & 2013 & S001P & 0.9684875 & 0.9543575 & 0.9826175 & 0.007443900\\\\\n", "\tS002PSim & total & Brasil & 2013 & S002P & 0.9553384 & 0.9395892 & 0.9710877 & 0.008411119\\\\\n", "\tS002PSim1 & total & Capital & 2013 & S002P & 0.9496928 & 0.9254372 & 0.9739484 & 0.013031097\\\\\n", "\tS003PSim & total & Brasil & 2013 & S003P & 0.8373394 & 0.8081990 & 0.8664797 & 0.017756001\\\\\n", "\tS003PSim1 & total & Capital & 2013 & S003P & 0.8387646 & 0.8031855 & 0.8743437 & 0.021642473\\\\\n", "\tS004PSim & total & Brasil & 2013 & S004P & 0.8371707 & 0.8089044 & 0.8654369 & 0.017226844\\\\\n", "\tS004PSim1 & total & Capital & 2013 & S004P & 0.8334519 & 0.7971984 & 0.8697053 & 0.022193247\\\\\n", "\tS005PSim & total & Brasil & 2013 & S005P & 0.7183521 & 0.6808240 & 0.7558801 & 0.026654517\\\\\n", "\tS005PSim1 & total & Capital & 2013 & S005P & 0.6458412 & 0.5926037 & 0.6990787 & 0.042057542\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 10 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <chr> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| S001PSim | total | Brasil | 2013 | S001P | 0.9735258 | 0.9637944 | 0.9832573 | 0.005100147 |\n", "| S001PSim1 | total | Capital | 2013 | S001P | 0.9684875 | 0.9543575 | 0.9826175 | 0.007443900 |\n", "| S002PSim | total | Brasil | 2013 | S002P | 0.9553384 | 0.9395892 | 0.9710877 | 0.008411119 |\n", "| S002PSim1 | total | Capital | 2013 | S002P | 0.9496928 | 0.9254372 | 0.9739484 | 0.013031097 |\n", "| S003PSim | total | Brasil | 2013 | S003P | 0.8373394 | 0.8081990 | 0.8664797 | 0.017756001 |\n", "| S003PSim1 | total | Capital | 2013 | S003P | 0.8387646 | 0.8031855 | 0.8743437 | 0.021642473 |\n", "| S004PSim | total | Brasil | 2013 | S004P | 0.8371707 | 0.8089044 | 0.8654369 | 0.017226844 |\n", "| S004PSim1 | total | Capital | 2013 | S004P | 0.8334519 | 0.7971984 | 0.8697053 | 0.022193247 |\n", "| S005PSim | total | Brasil | 2013 | S005P | 0.7183521 | 0.6808240 | 0.7558801 | 0.026654517 |\n", "| S005PSim1 | total | Capital | 2013 | S005P | 0.6458412 | 0.5926037 | 0.6990787 | 0.042057542 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim LowerS UpperS \n", "S001PSim total Brasil 2013 S001P 0.9735258 0.9637944 0.9832573\n", "S001PSim1 total Capital 2013 S001P 0.9684875 0.9543575 0.9826175\n", "S002PSim total Brasil 2013 S002P 0.9553384 0.9395892 0.9710877\n", "S002PSim1 total Capital 2013 S002P 0.9496928 0.9254372 0.9739484\n", "S003PSim total Brasil 2013 S003P 0.8373394 0.8081990 0.8664797\n", "S003PSim1 total Capital 2013 S003P 0.8387646 0.8031855 0.8743437\n", "S004PSim total Brasil 2013 S004P 0.8371707 0.8089044 0.8654369\n", "S004PSim1 total Capital 2013 S004P 0.8334519 0.7971984 0.8697053\n", "S005PSim total Brasil 2013 S005P 0.7183521 0.6808240 0.7558801\n", "S005PSim1 total Capital 2013 S005P 0.6458412 0.5926037 0.6990787\n", " cvS \n", "S001PSim 0.005100147\n", "S001PSim1 0.007443900\n", "S002PSim 0.008411119\n", "S002PSim1 0.013031097\n", "S003PSim 0.017756001\n", "S003PSim1 0.021642473\n", "S004PSim 0.017226844\n", "S004PSim1 0.022193247\n", "S005PSim 0.026654517\n", "S005PSim1 0.042057542" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matriz_totais" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 395 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
Brancaraça Branca 2013S001P0.98553910.97336440.99771396.302872e-03
Pretaraça Preta 2013S001P0.93505670.88437720.98573622.765327e-02
Pardaraça Parda 2013S001P0.97051230.95667330.98435137.275367e-03
Até 1/2 SMrend_per_capitaAté 1/2 SM 2013S001P0.96342100.94609980.98074219.173033e-03
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2013S001P0.98078530.96280940.99876129.351212e-03
1 até 2 SMrend_per_capita1 até 2 SM 2013S001P0.98705800.97633650.99777965.541992e-03
2 até 3 SMrend_per_capita2 até 3 SM 2013S001P0.96156150.92188891.00123412.105064e-02
Mais de 3 SMrend_per_capitaMais de 3 SM 2013S001P0.98059970.95174401.00945541.501384e-02
18 a 24 anosfx_idade_S 18 a 24 anos 2013S001P0.96561730.94610390.98513071.031050e-02
25 a 29 anosfx_idade_S 25 a 29 anos 2013S001P0.97704850.96304480.99105227.312710e-03
30 a 39 anosfx_idade_S 30 a 39 anos 2013S001P0.97795340.96278700.99311987.912546e-03
40 anos ou maisfx_idade_S 40 anos ou mais 2013S001P0.98987420.96990281.00984561.029391e-02
urbanourb_rur urbano 2013S001P0.97323090.96218520.98427675.790700e-03
ruralurb_rur rural 2013S001P0.97509010.95689460.99328559.520707e-03
Rondôniauf Rondônia 2013S001P0.87678890.79200790.96156984.933500e-02
Acreuf Acre 2013S001P1.00000001.00000001.00000001.419089e-17
Amazonasuf Amazonas 2013S001P0.98563980.96749891.00378069.390557e-03
Roraimauf Roraima 2013S001P0.96629420.92805311.00453532.019169e-02
Paráuf Pará 2013S001P0.94040680.87568601.00512753.511396e-02
Amapáuf Amapá 2013S001P0.93419910.87409260.99430563.282719e-02
Tocantinsuf Tocantins 2013S001P1.00000001.00000001.00000000.000000e+00
Maranhãouf Maranhão 2013S001P0.94413270.85712581.03113974.701896e-02
Piauíuf Piauí 2013S001P0.97121450.92581581.01661332.384959e-02
Cearáuf Ceará 2013S001P1.00000001.00000001.00000000.000000e+00
Rio Grande do Norteuf Rio Grande do Norte2013S001P1.00000001.00000001.00000000.000000e+00
Paraíbauf Paraíba 2013S001P0.97013840.93369871.00657811.916430e-02
Pernambucouf Pernambuco 2013S001P0.98108340.95114511.01102181.556946e-02
Alagoasuf Alagoas 2013S001P0.98075760.94305551.01845971.961352e-02
Sergipeuf Sergipe 2013S001P1.00000001.00000001.00000000.000000e+00
Bahiauf Bahia 2013S001P0.99154660.97634581.00674747.821758e-03
João Pessoa4capitalJoão Pessoa 2013S005P0.71687980.55075410.88300550.118234030
Recife4capitalRecife 2013S005P0.52445750.22748840.82142650.288903499
Maceió4capitalMaceió 2013S005P0.85493200.70028421.00957980.092292000
Aracaju4capitalAracaju 2013S005P0.79278190.59554190.99002190.126938457
Salvador4capitalSalvador 2013S005P0.52019400.33325810.70713000.183349364
Belo Horizonte4capitalBelo Horizonte 2013S005P0.65311940.46227880.84396000.149083695
Vitória4capitalVitória 2013S005P0.56451570.28556300.84346830.252119509
Rio de Janeiro9capitalRio de Janeiro 2013S005P0.81838360.66387060.97289660.096329670
São Paulo8capitalSão Paulo 2013S005P0.53098080.38811640.67384530.137276829
Curitiba4capitalCuritiba 2013S005P0.51108110.27929830.74286390.231389291
Florianópolis4capitalFlorianópolis 2013S005P0.58025710.32423590.83627840.225116528
Porto Alegre4capitalPorto Alegre 2013S005P0.51081930.26372340.75791520.246802808
Campo Grande4capitalCampo Grande 2013S005P0.44355700.23374500.65336900.241341966
Cuiabá4capitalCuiabá 2013S005P0.62131150.35389240.88873060.219601299
Goiânia4capitalGoiânia 2013S005P0.44066000.21802690.66329320.257773410
Brasília4capitalBrasília 2013S005P0.62837150.47734530.77939780.122627515
Fundamental incompleto ou equivalente4gescol Fundamental incompleto ou equivalente2013S005P0.94023510.89941590.98105430.022150320
Médio incompleto ou equivalente4gescol Médio incompleto ou equivalente 2013S005P0.86840680.81339360.92342000.032321815
Superior incompleto ou equivalente4gescol Superior incompleto ou equivalente 2013S005P0.63531090.57013030.70049160.052346124
Superior completo4gescol Superior completo 2013S005P0.27333560.16775490.37891620.197078856
S001PSimtotal Brasil 2013S001P0.97352580.96379440.98325730.005100147
S001PSim1total Capital 2013S001P0.96848750.95435750.98261750.007443900
S002PSimtotal Brasil 2013S002P0.95533840.93958920.97108770.008411119
S002PSim1total Capital 2013S002P0.94969280.92543720.97394840.013031097
S003PSimtotal Brasil 2013S003P0.83733940.80819900.86647970.017756001
S003PSim1total Capital 2013S003P0.83876460.80318550.87434370.021642473
S004PSimtotal Brasil 2013S004P0.83717070.80890440.86543690.017226844
S004PSim1total Capital 2013S004P0.83345190.79719840.86970530.022193247
S005PSimtotal Brasil 2013S005P0.71835210.68082400.75588010.026654517
S005PSim1total Capital 2013S005P0.64584120.59260370.69907870.042057542
\n" ], "text/latex": [ "A data.frame: 395 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tBranca & raça & Branca & 2013 & S001P & 0.9855391 & 0.9733644 & 0.9977139 & 6.302872e-03\\\\\n", "\tPreta & raça & Preta & 2013 & S001P & 0.9350567 & 0.8843772 & 0.9857362 & 2.765327e-02\\\\\n", "\tParda & raça & Parda & 2013 & S001P & 0.9705123 & 0.9566733 & 0.9843513 & 7.275367e-03\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2013 & S001P & 0.9634210 & 0.9460998 & 0.9807421 & 9.173033e-03\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2013 & S001P & 0.9807853 & 0.9628094 & 0.9987612 & 9.351212e-03\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2013 & S001P & 0.9870580 & 0.9763365 & 0.9977796 & 5.541992e-03\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2013 & S001P & 0.9615615 & 0.9218889 & 1.0012341 & 2.105064e-02\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2013 & S001P & 0.9805997 & 0.9517440 & 1.0094554 & 1.501384e-02\\\\\n", "\t18 a 24 anos & fx\\_idade\\_S & 18 a 24 anos & 2013 & S001P & 0.9656173 & 0.9461039 & 0.9851307 & 1.031050e-02\\\\\n", "\t25 a 29 anos & fx\\_idade\\_S & 25 a 29 anos & 2013 & S001P & 0.9770485 & 0.9630448 & 0.9910522 & 7.312710e-03\\\\\n", "\t30 a 39 anos & fx\\_idade\\_S & 30 a 39 anos & 2013 & S001P & 0.9779534 & 0.9627870 & 0.9931198 & 7.912546e-03\\\\\n", "\t40 anos ou mais & fx\\_idade\\_S & 40 anos ou mais & 2013 & S001P & 0.9898742 & 0.9699028 & 1.0098456 & 1.029391e-02\\\\\n", "\turbano & urb\\_rur & urbano & 2013 & S001P & 0.9732309 & 0.9621852 & 0.9842767 & 5.790700e-03\\\\\n", "\trural & urb\\_rur & rural & 2013 & S001P & 0.9750901 & 0.9568946 & 0.9932855 & 9.520707e-03\\\\\n", "\tRondônia & uf & Rondônia & 2013 & S001P & 0.8767889 & 0.7920079 & 0.9615698 & 4.933500e-02\\\\\n", "\tAcre & uf & Acre & 2013 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 1.419089e-17\\\\\n", "\tAmazonas & uf & Amazonas & 2013 & S001P & 0.9856398 & 0.9674989 & 1.0037806 & 9.390557e-03\\\\\n", "\tRoraima & uf & Roraima & 2013 & S001P & 0.9662942 & 0.9280531 & 1.0045353 & 2.019169e-02\\\\\n", "\tPará & uf & Pará & 2013 & S001P & 0.9404068 & 0.8756860 & 1.0051275 & 3.511396e-02\\\\\n", "\tAmapá & uf & Amapá & 2013 & S001P & 0.9341991 & 0.8740926 & 0.9943056 & 3.282719e-02\\\\\n", "\tTocantins & uf & Tocantins & 2013 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tMaranhão & uf & Maranhão & 2013 & S001P & 0.9441327 & 0.8571258 & 1.0311397 & 4.701896e-02\\\\\n", "\tPiauí & uf & Piauí & 2013 & S001P & 0.9712145 & 0.9258158 & 1.0166133 & 2.384959e-02\\\\\n", "\tCeará & uf & Ceará & 2013 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tRio Grande do Norte & uf & Rio Grande do Norte & 2013 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tParaíba & uf & Paraíba & 2013 & S001P & 0.9701384 & 0.9336987 & 1.0065781 & 1.916430e-02\\\\\n", "\tPernambuco & uf & Pernambuco & 2013 & S001P & 0.9810834 & 0.9511451 & 1.0110218 & 1.556946e-02\\\\\n", "\tAlagoas & uf & Alagoas & 2013 & S001P & 0.9807576 & 0.9430555 & 1.0184597 & 1.961352e-02\\\\\n", "\tSergipe & uf & Sergipe & 2013 & S001P & 1.0000000 & 1.0000000 & 1.0000000 & 0.000000e+00\\\\\n", "\tBahia & uf & Bahia & 2013 & S001P & 0.9915466 & 0.9763458 & 1.0067474 & 7.821758e-03\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tJoão Pessoa4 & capital & João Pessoa & 2013 & S005P & 0.7168798 & 0.5507541 & 0.8830055 & 0.118234030\\\\\n", "\tRecife4 & capital & Recife & 2013 & S005P & 0.5244575 & 0.2274884 & 0.8214265 & 0.288903499\\\\\n", "\tMaceió4 & capital & Maceió & 2013 & S005P & 0.8549320 & 0.7002842 & 1.0095798 & 0.092292000\\\\\n", "\tAracaju4 & capital & Aracaju & 2013 & S005P & 0.7927819 & 0.5955419 & 0.9900219 & 0.126938457\\\\\n", "\tSalvador4 & capital & Salvador & 2013 & S005P & 0.5201940 & 0.3332581 & 0.7071300 & 0.183349364\\\\\n", "\tBelo Horizonte4 & capital & Belo Horizonte & 2013 & S005P & 0.6531194 & 0.4622788 & 0.8439600 & 0.149083695\\\\\n", "\tVitória4 & capital & Vitória & 2013 & S005P & 0.5645157 & 0.2855630 & 0.8434683 & 0.252119509\\\\\n", "\tRio de Janeiro9 & capital & Rio de Janeiro & 2013 & S005P & 0.8183836 & 0.6638706 & 0.9728966 & 0.096329670\\\\\n", "\tSão Paulo8 & capital & São Paulo & 2013 & S005P & 0.5309808 & 0.3881164 & 0.6738453 & 0.137276829\\\\\n", "\tCuritiba4 & capital & Curitiba & 2013 & S005P & 0.5110811 & 0.2792983 & 0.7428639 & 0.231389291\\\\\n", "\tFlorianópolis4 & capital & Florianópolis & 2013 & S005P & 0.5802571 & 0.3242359 & 0.8362784 & 0.225116528\\\\\n", "\tPorto Alegre4 & capital & Porto Alegre & 2013 & S005P & 0.5108193 & 0.2637234 & 0.7579152 & 0.246802808\\\\\n", "\tCampo Grande4 & capital & Campo Grande & 2013 & S005P & 0.4435570 & 0.2337450 & 0.6533690 & 0.241341966\\\\\n", "\tCuiabá4 & capital & Cuiabá & 2013 & S005P & 0.6213115 & 0.3538924 & 0.8887306 & 0.219601299\\\\\n", "\tGoiânia4 & capital & Goiânia & 2013 & S005P & 0.4406600 & 0.2180269 & 0.6632932 & 0.257773410\\\\\n", "\tBrasília4 & capital & Brasília & 2013 & S005P & 0.6283715 & 0.4773453 & 0.7793978 & 0.122627515\\\\\n", "\tFundamental incompleto ou equivalente4 & gescol & Fundamental incompleto ou equivalente & 2013 & S005P & 0.9402351 & 0.8994159 & 0.9810543 & 0.022150320\\\\\n", "\tMédio incompleto ou equivalente4 & gescol & Médio incompleto ou equivalente & 2013 & S005P & 0.8684068 & 0.8133936 & 0.9234200 & 0.032321815\\\\\n", "\tSuperior incompleto ou equivalente4 & gescol & Superior incompleto ou equivalente & 2013 & S005P & 0.6353109 & 0.5701303 & 0.7004916 & 0.052346124\\\\\n", "\tSuperior completo4 & gescol & Superior completo & 2013 & S005P & 0.2733356 & 0.1677549 & 0.3789162 & 0.197078856\\\\\n", "\tS001PSim & total & Brasil & 2013 & S001P & 0.9735258 & 0.9637944 & 0.9832573 & 0.005100147\\\\\n", "\tS001PSim1 & total & Capital & 2013 & S001P & 0.9684875 & 0.9543575 & 0.9826175 & 0.007443900\\\\\n", "\tS002PSim & total & Brasil & 2013 & S002P & 0.9553384 & 0.9395892 & 0.9710877 & 0.008411119\\\\\n", "\tS002PSim1 & total & Capital & 2013 & S002P & 0.9496928 & 0.9254372 & 0.9739484 & 0.013031097\\\\\n", "\tS003PSim & total & Brasil & 2013 & S003P & 0.8373394 & 0.8081990 & 0.8664797 & 0.017756001\\\\\n", "\tS003PSim1 & total & Capital & 2013 & S003P & 0.8387646 & 0.8031855 & 0.8743437 & 0.021642473\\\\\n", "\tS004PSim & total & Brasil & 2013 & S004P & 0.8371707 & 0.8089044 & 0.8654369 & 0.017226844\\\\\n", "\tS004PSim1 & total & Capital & 2013 & S004P & 0.8334519 & 0.7971984 & 0.8697053 & 0.022193247\\\\\n", "\tS005PSim & total & Brasil & 2013 & S005P & 0.7183521 & 0.6808240 & 0.7558801 & 0.026654517\\\\\n", "\tS005PSim1 & total & Capital & 2013 & S005P & 0.6458412 & 0.5926037 & 0.6990787 & 0.042057542\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 395 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Branca | raça | Branca | 2013 | S001P | 0.9855391 | 0.9733644 | 0.9977139 | 6.302872e-03 |\n", "| Preta | raça | Preta | 2013 | S001P | 0.9350567 | 0.8843772 | 0.9857362 | 2.765327e-02 |\n", "| Parda | raça | Parda | 2013 | S001P | 0.9705123 | 0.9566733 | 0.9843513 | 7.275367e-03 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2013 | S001P | 0.9634210 | 0.9460998 | 0.9807421 | 9.173033e-03 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2013 | S001P | 0.9807853 | 0.9628094 | 0.9987612 | 9.351212e-03 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2013 | S001P | 0.9870580 | 0.9763365 | 0.9977796 | 5.541992e-03 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2013 | S001P | 0.9615615 | 0.9218889 | 1.0012341 | 2.105064e-02 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2013 | S001P | 0.9805997 | 0.9517440 | 1.0094554 | 1.501384e-02 |\n", "| 18 a 24 anos | fx_idade_S | 18 a 24 anos | 2013 | S001P | 0.9656173 | 0.9461039 | 0.9851307 | 1.031050e-02 |\n", "| 25 a 29 anos | fx_idade_S | 25 a 29 anos | 2013 | S001P | 0.9770485 | 0.9630448 | 0.9910522 | 7.312710e-03 |\n", "| 30 a 39 anos | fx_idade_S | 30 a 39 anos | 2013 | S001P | 0.9779534 | 0.9627870 | 0.9931198 | 7.912546e-03 |\n", "| 40 anos ou mais | fx_idade_S | 40 anos ou mais | 2013 | S001P | 0.9898742 | 0.9699028 | 1.0098456 | 1.029391e-02 |\n", "| urbano | urb_rur | urbano | 2013 | S001P | 0.9732309 | 0.9621852 | 0.9842767 | 5.790700e-03 |\n", "| rural | urb_rur | rural | 2013 | S001P | 0.9750901 | 0.9568946 | 0.9932855 | 9.520707e-03 |\n", "| Rondônia | uf | Rondônia | 2013 | S001P | 0.8767889 | 0.7920079 | 0.9615698 | 4.933500e-02 |\n", "| Acre | uf | Acre | 2013 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 1.419089e-17 |\n", "| Amazonas | uf | Amazonas | 2013 | S001P | 0.9856398 | 0.9674989 | 1.0037806 | 9.390557e-03 |\n", "| Roraima | uf | Roraima | 2013 | S001P | 0.9662942 | 0.9280531 | 1.0045353 | 2.019169e-02 |\n", "| Pará | uf | Pará | 2013 | S001P | 0.9404068 | 0.8756860 | 1.0051275 | 3.511396e-02 |\n", "| Amapá | uf | Amapá | 2013 | S001P | 0.9341991 | 0.8740926 | 0.9943056 | 3.282719e-02 |\n", "| Tocantins | uf | Tocantins | 2013 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Maranhão | uf | Maranhão | 2013 | S001P | 0.9441327 | 0.8571258 | 1.0311397 | 4.701896e-02 |\n", "| Piauí | uf | Piauí | 2013 | S001P | 0.9712145 | 0.9258158 | 1.0166133 | 2.384959e-02 |\n", "| Ceará | uf | Ceará | 2013 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Rio Grande do Norte | uf | Rio Grande do Norte | 2013 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Paraíba | uf | Paraíba | 2013 | S001P | 0.9701384 | 0.9336987 | 1.0065781 | 1.916430e-02 |\n", "| Pernambuco | uf | Pernambuco | 2013 | S001P | 0.9810834 | 0.9511451 | 1.0110218 | 1.556946e-02 |\n", "| Alagoas | uf | Alagoas | 2013 | S001P | 0.9807576 | 0.9430555 | 1.0184597 | 1.961352e-02 |\n", "| Sergipe | uf | Sergipe | 2013 | S001P | 1.0000000 | 1.0000000 | 1.0000000 | 0.000000e+00 |\n", "| Bahia | uf | Bahia | 2013 | S001P | 0.9915466 | 0.9763458 | 1.0067474 | 7.821758e-03 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| João Pessoa4 | capital | João Pessoa | 2013 | S005P | 0.7168798 | 0.5507541 | 0.8830055 | 0.118234030 |\n", "| Recife4 | capital | Recife | 2013 | S005P | 0.5244575 | 0.2274884 | 0.8214265 | 0.288903499 |\n", "| Maceió4 | capital | Maceió | 2013 | S005P | 0.8549320 | 0.7002842 | 1.0095798 | 0.092292000 |\n", "| Aracaju4 | capital | Aracaju | 2013 | S005P | 0.7927819 | 0.5955419 | 0.9900219 | 0.126938457 |\n", "| Salvador4 | capital | Salvador | 2013 | S005P | 0.5201940 | 0.3332581 | 0.7071300 | 0.183349364 |\n", "| Belo Horizonte4 | capital | Belo Horizonte | 2013 | S005P | 0.6531194 | 0.4622788 | 0.8439600 | 0.149083695 |\n", "| Vitória4 | capital | Vitória | 2013 | S005P | 0.5645157 | 0.2855630 | 0.8434683 | 0.252119509 |\n", "| Rio de Janeiro9 | capital | Rio de Janeiro | 2013 | S005P | 0.8183836 | 0.6638706 | 0.9728966 | 0.096329670 |\n", "| São Paulo8 | capital | São Paulo | 2013 | S005P | 0.5309808 | 0.3881164 | 0.6738453 | 0.137276829 |\n", "| Curitiba4 | capital | Curitiba | 2013 | S005P | 0.5110811 | 0.2792983 | 0.7428639 | 0.231389291 |\n", "| Florianópolis4 | capital | Florianópolis | 2013 | S005P | 0.5802571 | 0.3242359 | 0.8362784 | 0.225116528 |\n", "| Porto Alegre4 | capital | Porto Alegre | 2013 | S005P | 0.5108193 | 0.2637234 | 0.7579152 | 0.246802808 |\n", "| Campo Grande4 | capital | Campo Grande | 2013 | S005P | 0.4435570 | 0.2337450 | 0.6533690 | 0.241341966 |\n", "| Cuiabá4 | capital | Cuiabá | 2013 | S005P | 0.6213115 | 0.3538924 | 0.8887306 | 0.219601299 |\n", "| Goiânia4 | capital | Goiânia | 2013 | S005P | 0.4406600 | 0.2180269 | 0.6632932 | 0.257773410 |\n", "| Brasília4 | capital | Brasília | 2013 | S005P | 0.6283715 | 0.4773453 | 0.7793978 | 0.122627515 |\n", "| Fundamental incompleto ou equivalente4 | gescol | Fundamental incompleto ou equivalente | 2013 | S005P | 0.9402351 | 0.8994159 | 0.9810543 | 0.022150320 |\n", "| Médio incompleto ou equivalente4 | gescol | Médio incompleto ou equivalente | 2013 | S005P | 0.8684068 | 0.8133936 | 0.9234200 | 0.032321815 |\n", "| Superior incompleto ou equivalente4 | gescol | Superior incompleto ou equivalente | 2013 | S005P | 0.6353109 | 0.5701303 | 0.7004916 | 0.052346124 |\n", "| Superior completo4 | gescol | Superior completo | 2013 | S005P | 0.2733356 | 0.1677549 | 0.3789162 | 0.197078856 |\n", "| S001PSim | total | Brasil | 2013 | S001P | 0.9735258 | 0.9637944 | 0.9832573 | 0.005100147 |\n", "| S001PSim1 | total | Capital | 2013 | S001P | 0.9684875 | 0.9543575 | 0.9826175 | 0.007443900 |\n", "| S002PSim | total | Brasil | 2013 | S002P | 0.9553384 | 0.9395892 | 0.9710877 | 0.008411119 |\n", "| S002PSim1 | total | Capital | 2013 | S002P | 0.9496928 | 0.9254372 | 0.9739484 | 0.013031097 |\n", "| S003PSim | total | Brasil | 2013 | S003P | 0.8373394 | 0.8081990 | 0.8664797 | 0.017756001 |\n", "| S003PSim1 | total | Capital | 2013 | S003P | 0.8387646 | 0.8031855 | 0.8743437 | 0.021642473 |\n", "| S004PSim | total | Brasil | 2013 | S004P | 0.8371707 | 0.8089044 | 0.8654369 | 0.017226844 |\n", "| S004PSim1 | total | Capital | 2013 | S004P | 0.8334519 | 0.7971984 | 0.8697053 | 0.022193247 |\n", "| S005PSim | total | Brasil | 2013 | S005P | 0.7183521 | 0.6808240 | 0.7558801 | 0.026654517 |\n", "| S005PSim1 | total | Capital | 2013 | S005P | 0.6458412 | 0.5926037 | 0.6990787 | 0.042057542 |\n", "\n" ], "text/plain": [ " abr_tipo \n", "Branca raça \n", "Preta raça \n", "Parda raça \n", "Até 1/2 SM rend_per_capita\n", "1/2 até 1 SM rend_per_capita\n", "1 até 2 SM rend_per_capita\n", "2 até 3 SM rend_per_capita\n", "Mais de 3 SM rend_per_capita\n", "18 a 24 anos fx_idade_S \n", "25 a 29 anos fx_idade_S \n", "30 a 39 anos fx_idade_S \n", "40 anos ou mais fx_idade_S \n", "urbano urb_rur \n", "rural urb_rur \n", "Rondônia uf \n", "Acre uf \n", "Amazonas uf \n", "Roraima uf \n", "Pará uf \n", "Amapá uf \n", "Tocantins uf \n", "Maranhão uf \n", "Piauí uf \n", "Ceará uf \n", "Rio Grande do Norte uf \n", "Paraíba uf \n", "Pernambuco uf \n", "Alagoas uf \n", "Sergipe uf \n", "Bahia uf \n", "⋮ ⋮ \n", "João Pessoa4 capital \n", "Recife4 capital \n", "Maceió4 capital \n", "Aracaju4 capital \n", "Salvador4 capital \n", "Belo Horizonte4 capital \n", "Vitória4 capital \n", "Rio de Janeiro9 capital \n", "São Paulo8 capital \n", "Curitiba4 capital \n", "Florianópolis4 capital \n", "Porto Alegre4 capital \n", "Campo Grande4 capital \n", "Cuiabá4 capital \n", "Goiânia4 capital \n", "Brasília4 capital \n", "Fundamental incompleto ou equivalente4 gescol \n", "Médio incompleto ou equivalente4 gescol \n", "Superior incompleto ou equivalente4 gescol \n", "Superior completo4 gescol \n", "S001PSim total \n", "S001PSim1 total \n", "S002PSim total \n", "S002PSim1 total \n", "S003PSim total \n", "S003PSim1 total \n", "S004PSim total \n", "S004PSim1 total \n", "S005PSim total \n", "S005PSim1 total \n", " abr_nome \n", "Branca Branca \n", "Preta Preta \n", "Parda Parda \n", "Até 1/2 SM Até 1/2 SM \n", "1/2 até 1 SM 1/2 até 1 SM \n", "1 até 2 SM 1 até 2 SM \n", "2 até 3 SM 2 até 3 SM \n", "Mais de 3 SM Mais de 3 SM \n", "18 a 24 anos 18 a 24 anos \n", "25 a 29 anos 25 a 29 anos \n", "30 a 39 anos 30 a 39 anos \n", "40 anos ou mais 40 anos ou mais \n", "urbano urbano \n", "rural rural \n", "Rondônia Rondônia \n", "Acre Acre \n", "Amazonas Amazonas \n", "Roraima Roraima \n", "Pará Pará \n", "Amapá Amapá \n", "Tocantins Tocantins \n", "Maranhão Maranhão \n", "Piauí Piauí \n", "Ceará Ceará \n", "Rio Grande do Norte Rio Grande do Norte \n", "Paraíba Paraíba \n", "Pernambuco Pernambuco \n", "Alagoas Alagoas \n", "Sergipe Sergipe \n", "Bahia Bahia \n", "⋮ ⋮ \n", "João Pessoa4 João Pessoa \n", "Recife4 Recife \n", "Maceió4 Maceió \n", "Aracaju4 Aracaju \n", "Salvador4 Salvador \n", "Belo Horizonte4 Belo Horizonte \n", "Vitória4 Vitória \n", "Rio de Janeiro9 Rio de Janeiro \n", "São Paulo8 São Paulo \n", "Curitiba4 Curitiba \n", "Florianópolis4 Florianópolis \n", "Porto Alegre4 Porto Alegre \n", "Campo Grande4 Campo Grande \n", "Cuiabá4 Cuiabá \n", "Goiânia4 Goiânia \n", "Brasília4 Brasília \n", "Fundamental incompleto ou equivalente4 Fundamental incompleto ou equivalente\n", "Médio incompleto ou equivalente4 Médio incompleto ou equivalente \n", "Superior incompleto ou equivalente4 Superior incompleto ou equivalente \n", "Superior completo4 Superior completo \n", "S001PSim Brasil \n", "S001PSim1 Capital \n", "S002PSim Brasil \n", "S002PSim1 Capital \n", "S003PSim Brasil \n", "S003PSim1 Capital \n", "S004PSim Brasil \n", "S004PSim1 Capital \n", "S005PSim Brasil \n", "S005PSim1 Capital \n", " Ano Indicador Sim LowerS \n", "Branca 2013 S001P 0.9855391 0.9733644\n", "Preta 2013 S001P 0.9350567 0.8843772\n", "Parda 2013 S001P 0.9705123 0.9566733\n", "Até 1/2 SM 2013 S001P 0.9634210 0.9460998\n", "1/2 até 1 SM 2013 S001P 0.9807853 0.9628094\n", "1 até 2 SM 2013 S001P 0.9870580 0.9763365\n", "2 até 3 SM 2013 S001P 0.9615615 0.9218889\n", "Mais de 3 SM 2013 S001P 0.9805997 0.9517440\n", "18 a 24 anos 2013 S001P 0.9656173 0.9461039\n", "25 a 29 anos 2013 S001P 0.9770485 0.9630448\n", "30 a 39 anos 2013 S001P 0.9779534 0.9627870\n", "40 anos ou mais 2013 S001P 0.9898742 0.9699028\n", "urbano 2013 S001P 0.9732309 0.9621852\n", "rural 2013 S001P 0.9750901 0.9568946\n", "Rondônia 2013 S001P 0.8767889 0.7920079\n", "Acre 2013 S001P 1.0000000 1.0000000\n", "Amazonas 2013 S001P 0.9856398 0.9674989\n", "Roraima 2013 S001P 0.9662942 0.9280531\n", "Pará 2013 S001P 0.9404068 0.8756860\n", "Amapá 2013 S001P 0.9341991 0.8740926\n", "Tocantins 2013 S001P 1.0000000 1.0000000\n", "Maranhão 2013 S001P 0.9441327 0.8571258\n", "Piauí 2013 S001P 0.9712145 0.9258158\n", "Ceará 2013 S001P 1.0000000 1.0000000\n", "Rio Grande do Norte 2013 S001P 1.0000000 1.0000000\n", "Paraíba 2013 S001P 0.9701384 0.9336987\n", "Pernambuco 2013 S001P 0.9810834 0.9511451\n", "Alagoas 2013 S001P 0.9807576 0.9430555\n", "Sergipe 2013 S001P 1.0000000 1.0000000\n", "Bahia 2013 S001P 0.9915466 0.9763458\n", "⋮ ⋮ ⋮ ⋮ ⋮ \n", "João Pessoa4 2013 S005P 0.7168798 0.5507541\n", "Recife4 2013 S005P 0.5244575 0.2274884\n", "Maceió4 2013 S005P 0.8549320 0.7002842\n", "Aracaju4 2013 S005P 0.7927819 0.5955419\n", "Salvador4 2013 S005P 0.5201940 0.3332581\n", "Belo Horizonte4 2013 S005P 0.6531194 0.4622788\n", "Vitória4 2013 S005P 0.5645157 0.2855630\n", "Rio de Janeiro9 2013 S005P 0.8183836 0.6638706\n", "São Paulo8 2013 S005P 0.5309808 0.3881164\n", "Curitiba4 2013 S005P 0.5110811 0.2792983\n", "Florianópolis4 2013 S005P 0.5802571 0.3242359\n", "Porto Alegre4 2013 S005P 0.5108193 0.2637234\n", "Campo Grande4 2013 S005P 0.4435570 0.2337450\n", "Cuiabá4 2013 S005P 0.6213115 0.3538924\n", "Goiânia4 2013 S005P 0.4406600 0.2180269\n", "Brasília4 2013 S005P 0.6283715 0.4773453\n", "Fundamental incompleto ou equivalente4 2013 S005P 0.9402351 0.8994159\n", "Médio incompleto ou equivalente4 2013 S005P 0.8684068 0.8133936\n", "Superior incompleto ou equivalente4 2013 S005P 0.6353109 0.5701303\n", "Superior completo4 2013 S005P 0.2733356 0.1677549\n", "S001PSim 2013 S001P 0.9735258 0.9637944\n", "S001PSim1 2013 S001P 0.9684875 0.9543575\n", "S002PSim 2013 S002P 0.9553384 0.9395892\n", "S002PSim1 2013 S002P 0.9496928 0.9254372\n", "S003PSim 2013 S003P 0.8373394 0.8081990\n", "S003PSim1 2013 S003P 0.8387646 0.8031855\n", "S004PSim 2013 S004P 0.8371707 0.8089044\n", "S004PSim1 2013 S004P 0.8334519 0.7971984\n", "S005PSim 2013 S005P 0.7183521 0.6808240\n", "S005PSim1 2013 S005P 0.6458412 0.5926037\n", " UpperS cvS \n", "Branca 0.9977139 6.302872e-03\n", "Preta 0.9857362 2.765327e-02\n", "Parda 0.9843513 7.275367e-03\n", "Até 1/2 SM 0.9807421 9.173033e-03\n", "1/2 até 1 SM 0.9987612 9.351212e-03\n", "1 até 2 SM 0.9977796 5.541992e-03\n", "2 até 3 SM 1.0012341 2.105064e-02\n", "Mais de 3 SM 1.0094554 1.501384e-02\n", "18 a 24 anos 0.9851307 1.031050e-02\n", "25 a 29 anos 0.9910522 7.312710e-03\n", "30 a 39 anos 0.9931198 7.912546e-03\n", "40 anos ou mais 1.0098456 1.029391e-02\n", "urbano 0.9842767 5.790700e-03\n", "rural 0.9932855 9.520707e-03\n", "Rondônia 0.9615698 4.933500e-02\n", "Acre 1.0000000 1.419089e-17\n", "Amazonas 1.0037806 9.390557e-03\n", "Roraima 1.0045353 2.019169e-02\n", "Pará 1.0051275 3.511396e-02\n", "Amapá 0.9943056 3.282719e-02\n", "Tocantins 1.0000000 0.000000e+00\n", "Maranhão 1.0311397 4.701896e-02\n", "Piauí 1.0166133 2.384959e-02\n", "Ceará 1.0000000 0.000000e+00\n", "Rio Grande do Norte 1.0000000 0.000000e+00\n", "Paraíba 1.0065781 1.916430e-02\n", "Pernambuco 1.0110218 1.556946e-02\n", "Alagoas 1.0184597 1.961352e-02\n", "Sergipe 1.0000000 0.000000e+00\n", "Bahia 1.0067474 7.821758e-03\n", "⋮ ⋮ ⋮ \n", "João Pessoa4 0.8830055 0.118234030 \n", "Recife4 0.8214265 0.288903499 \n", "Maceió4 1.0095798 0.092292000 \n", "Aracaju4 0.9900219 0.126938457 \n", "Salvador4 0.7071300 0.183349364 \n", "Belo Horizonte4 0.8439600 0.149083695 \n", "Vitória4 0.8434683 0.252119509 \n", "Rio de Janeiro9 0.9728966 0.096329670 \n", "São Paulo8 0.6738453 0.137276829 \n", "Curitiba4 0.7428639 0.231389291 \n", "Florianópolis4 0.8362784 0.225116528 \n", "Porto Alegre4 0.7579152 0.246802808 \n", "Campo Grande4 0.6533690 0.241341966 \n", "Cuiabá4 0.8887306 0.219601299 \n", "Goiânia4 0.6632932 0.257773410 \n", "Brasília4 0.7793978 0.122627515 \n", "Fundamental incompleto ou equivalente4 0.9810543 0.022150320 \n", "Médio incompleto ou equivalente4 0.9234200 0.032321815 \n", "Superior incompleto ou equivalente4 0.7004916 0.052346124 \n", "Superior completo4 0.3789162 0.197078856 \n", "S001PSim 0.9832573 0.005100147 \n", "S001PSim1 0.9826175 0.007443900 \n", "S002PSim 0.9710877 0.008411119 \n", "S002PSim1 0.9739484 0.013031097 \n", "S003PSim 0.8664797 0.017756001 \n", "S003PSim1 0.8743437 0.021642473 \n", "S004PSim 0.8654369 0.017226844 \n", "S004PSim1 0.8697053 0.022193247 \n", "S005PSim 0.7558801 0.026654517 \n", "S005PSim1 0.6990787 0.042057542 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo S 2013 " ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2013S_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "4.1.2" } }, "nbformat": 4, "nbformat_minor": 4 }