{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![](https://github.com/bigdata-icict/ETL-Dataiku-DSS/raw/master/tutoriais/pcdas_1.5.png)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Notebook para criação de tabela de indicadores da PNS - módulo I 2019 Cobertura de Plano de Saúde" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Bibliotecas Utilizadas" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "#Lendo pacotes necessários\n", "library(survey)\n", "library(ggplot2)\n", "library(dplyr)\n", "library(foreign)\n", "library(forcats)\n", "library(tidyverse)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Carregando microdados da PNS" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "
  1. 293725
  2. 682
\n" ], "text/latex": [ "\\begin{enumerate*}\n", "\\item 293725\n", "\\item 682\n", "\\end{enumerate*}\n" ], "text/markdown": [ "1. 293725\n", "2. 682\n", "\n", "\n" ], "text/plain": [ "[1] 293725 682" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Carregando banco de dados para R versão 3.5.0 ou superior\n", "load(\"\")\n", "\n", "#conferindo as dimensões (número de linhas e colunas)\n", "dim(\"\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definição do peso e filtragem de respondentes do questionário" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " Min. 1st Qu. Median Mean 3rd Qu. Max. \n", " 0.01046 0.31515 0.58914 1.00000 1.16920 39.99838 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando registros válidos e calculando peso amostral - summary de verificação\n", "pns2019.1<- %>% mutate(peso_moradores=((V00281*279382/209589607))) \n", "pns2019.1<-pns2019.1 %>% filter(!is.na(peso_moradores))\n", "summary(pns2019.1$peso_moradores)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criação de variáveis dos indicadores" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Sim
65118
Não
214264
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 65118\n", "\\item[Não] 214264\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 65118Não\n", ": 214264\n", "\n" ], "text/plain": [ " Sim Não \n", " 65118 214264 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
58597
Não
220785
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 58597\n", "\\item[Não] 220785\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 58597Não\n", ": 220785\n", "\n" ], "text/plain": [ " Sim Não \n", " 58597 220785 " ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
Sim
31511
Não
247871
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Sim] 31511\n", "\\item[Não] 247871\n", "\\end{description*}\n" ], "text/markdown": [ "Sim\n", ": 31511Não\n", ": 247871\n", "\n" ], "text/plain": [ " Sim Não \n", " 31511 247871 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Desfechos - Indicadores\n", "\n", "#Posse de plano de saúde médico ou odontológico particular - I001P\n", "pns2019.1 <- pns2019.1 %>% mutate(I001P = ifelse(I00101==2 & I00102==2,2,\n", " ifelse(I00101==1 | I00102==1,1,2))) \n", "pns2019.1$I001P<-factor(pns2019.1$I001P, levels=c(1,2), labels=c(\"Sim\",\"Não\"))\n", "summary(pns2019.1$I001P)\n", "\n", "\n", "#Posse de plano de saúde médico particular - I002P\n", "pns2019.1 <- pns2019.1 %>% mutate(I002P= ifelse(I00102==1, 1,0))\n", "pns2019.1$I002P<-factor(pns2019.1$I002P, levels=c(1,0), labels=c(\"Sim\", \"Não\"))\n", "summary(pns2019.1$I002P)\n", "\n", "#Posse de plano de saúde odontológico particular - I003P\n", "pns2019.1 <- pns2019.1 %>% mutate(I003P= ifelse(I00101 ==1, 1,0))\n", "pns2019.1$I003P<-factor(pns2019.1$I003P, levels=c(1,0), labels=c(\"Sim\", \"Não\"))\n", "summary(pns2019.1$I003P)\n", "\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Definições de abrangências" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Situação urbana ou rural" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Urbano
212286
Rural
67096
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Urbano] 212286\n", "\\item[Rural] 67096\n", "\\end{description*}\n" ], "text/markdown": [ "Urbano\n", ": 212286Rural\n", ": 67096\n", "\n" ], "text/plain": [ "Urbano Rural \n", "212286 67096 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Situação Urbano ou Rural\n", "pns2019.1 <- pns2019.1 %>% rename(Situação_Urbano_Rural=V0026)\n", "pns2019.1$Situação_Urbano_Rural<-factor(pns2019.1$Situação_Urbano_Rural, levels=c(1,2), labels=c(\"Urbano\", \"Rural\"))\n", "summary(pns2019.1$Situação_Urbano_Rural)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Sexo" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Masculino
134442
Feminino
144940
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Masculino] 134442\n", "\\item[Feminino] 144940\n", "\\end{description*}\n" ], "text/markdown": [ "Masculino\n", ": 134442Feminino\n", ": 144940\n", "\n" ], "text/plain": [ "Masculino Feminino \n", " 134442 144940 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Sexo\n", "pns2019.1 <- pns2019.1 %>% rename(Sexo=C006)\n", "pns2019.1$Sexo<-factor(pns2019.1$Sexo, levels=c(1,2), labels=c(\"Masculino\", \"Feminino\"))\n", "summary(pns2019.1$Sexo)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### UF" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Rondônia
7037
Acre
7808
Amazonas
12642
Roraima
7995
Pará
13475
Amapá
6363
Tocantins
6127
Maranhão
17327
Piauí
8745
Ceará
14157
Rio Grande do Norte
9472
Paraíba
9652
Pernambuco
11934
Alagoas
9947
Sergipe
7803
Bahia
10516
Minas Gerais
14831
Espírito Santo
10078
Rio de Janeiro
13909
São Paulo
17522
Paraná
11237
Santa Catarina
10123
Rio Grande do Sul
9878
Mato Grosso do Sul
8350
Mato Grosso
7291
Goiás
8003
Distrito Federal
7160
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Rondônia] 7037\n", "\\item[Acre] 7808\n", "\\item[Amazonas] 12642\n", "\\item[Roraima] 7995\n", "\\item[Pará] 13475\n", "\\item[Amapá] 6363\n", "\\item[Tocantins] 6127\n", "\\item[Maranhão] 17327\n", "\\item[Piauí] 8745\n", "\\item[Ceará] 14157\n", "\\item[Rio Grande do Norte] 9472\n", "\\item[Paraíba] 9652\n", "\\item[Pernambuco] 11934\n", "\\item[Alagoas] 9947\n", "\\item[Sergipe] 7803\n", "\\item[Bahia] 10516\n", "\\item[Minas Gerais] 14831\n", "\\item[Espírito Santo] 10078\n", "\\item[Rio de Janeiro] 13909\n", "\\item[São Paulo] 17522\n", "\\item[Paraná] 11237\n", "\\item[Santa Catarina] 10123\n", "\\item[Rio Grande do Sul] 9878\n", "\\item[Mato Grosso do Sul] 8350\n", "\\item[Mato Grosso] 7291\n", "\\item[Goiás] 8003\n", "\\item[Distrito Federal] 7160\n", "\\end{description*}\n" ], "text/markdown": [ "Rondônia\n", ": 7037Acre\n", ": 7808Amazonas\n", ": 12642Roraima\n", ": 7995Pará\n", ": 13475Amapá\n", ": 6363Tocantins\n", ": 6127Maranhão\n", ": 17327Piauí\n", ": 8745Ceará\n", ": 14157Rio Grande do Norte\n", ": 9472Paraíba\n", ": 9652Pernambuco\n", ": 11934Alagoas\n", ": 9947Sergipe\n", ": 7803Bahia\n", ": 10516Minas Gerais\n", ": 14831Espírito Santo\n", ": 10078Rio de Janeiro\n", ": 13909São Paulo\n", ": 17522Paraná\n", ": 11237Santa Catarina\n", ": 10123Rio Grande do Sul\n", ": 9878Mato Grosso do Sul\n", ": 8350Mato Grosso\n", ": 7291Goiás\n", ": 8003Distrito Federal\n", ": 7160\n", "\n" ], "text/plain": [ " Rondônia Acre Amazonas Roraima \n", " 7037 7808 12642 7995 \n", " Pará Amapá Tocantins Maranhão \n", " 13475 6363 6127 17327 \n", " Piauí Ceará Rio Grande do Norte Paraíba \n", " 8745 14157 9472 9652 \n", " Pernambuco Alagoas Sergipe Bahia \n", " 11934 9947 7803 10516 \n", " Minas Gerais Espírito Santo Rio de Janeiro São Paulo \n", " 14831 10078 13909 17522 \n", " Paraná Santa Catarina Rio Grande do Sul Mato Grosso do Sul \n", " 11237 10123 9878 8350 \n", " Mato Grosso Goiás Distrito Federal \n", " 7291 8003 7160 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Estados - UFs\n", "pns2019.1 <- pns2019.1 %>% rename(Unidades_da_Federação=V0001)\n", "pns2019.1$Unidades_da_Federação<-factor(pns2019.1$Unidades_da_Federação, levels=c(11,12,13,14,15,16,17,21,22,23,24,25,26,27,28,29,31,32,33,35,41,42,43,50,51,52,53),\n", " label=c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\",\"Amapá\",\"Tocantins\",\"Maranhão\",\"Piauí\",\"Ceará\",\n", " \"Rio Grande do Norte\",\"Paraíba\",\"Pernambuco\",\"Alagoas\",\"Sergipe\",\"Bahia\",\n", " \"Minas Gerais\",\"Espírito Santo\",\"Rio de Janeiro\",\"São Paulo\",\n", " \"Paraná\",\"Santa Catarina\",\"Rio Grande do Sul\", \n", " \"Mato Grosso do Sul\",\"Mato Grosso\",\"Goiás\",\"Distrito Federal\"))\n", "summary(pns2019.1$Unidades_da_Federação)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Grandes Regiões" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Norte
61447
Nordeste
99553
Sudeste
56340
Sul
31238
Centro-Oeste
30804
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Norte] 61447\n", "\\item[Nordeste] 99553\n", "\\item[Sudeste] 56340\n", "\\item[Sul] 31238\n", "\\item[Centro-Oeste] 30804\n", "\\end{description*}\n" ], "text/markdown": [ "Norte\n", ": 61447Nordeste\n", ": 99553Sudeste\n", ": 56340Sul\n", ": 31238Centro-Oeste\n", ": 30804\n", "\n" ], "text/plain": [ " Norte Nordeste Sudeste Sul Centro-Oeste \n", " 61447 99553 56340 31238 30804 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Grandes Regiões\n", "pns2019.1 <- pns2019.1 %>% \n", " mutate(GrandesRegioes = fct_collapse(Unidades_da_Federação, \n", " `Norte` = c(\"Rondônia\",\"Acre\",\"Amazonas\",\"Roraima\",\"Pará\", \"Amapá\",\"Tocantins\"),\n", " `Nordeste` = c(\"Maranhão\", \"Piauí\", \"Ceará\", \"Rio Grande do Norte\", \"Paraíba\",\"Pernambuco\", \"Alagoas\",\"Sergipe\",\"Bahia\"),\n", " `Sudeste` = c(\"Minas Gerais\", \"Espírito Santo\",\"Rio de Janeiro\", \"São Paulo\"), \n", " `Sul` = c(\"Paraná\", \"Santa Catarina\", \"Rio Grande do Sul\"),\n", " `Centro-Oeste`= c(\"Mato Grosso do Sul\",\"Mato Grosso\", \"Goiás\", \"Distrito Federal\")))\n", "summary(pns2019.1$GrandesRegioes)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Capital" ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Porto Velho
7037
Rio Branco
7808
Manaus
12642
Boa Vista
7995
Belém
13475
Macapá
6363
Palmas
6127
São Luís
17327
Teresina
8745
Fortaleza
14157
Natal
9472
João Pessoa
9652
Recife
11934
Maceió
9947
Aracaju
7803
Salvador
10516
Belo Horizonte
14831
Vitória
10078
Rio de Janeiro
13909
São Paulo
17522
Curitiba
11237
Florianópolis
10123
Porto Alegre
9878
Campo Grande
8350
Cuiabá
7291
Goiânia
8003
Brasília
7160
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Porto Velho] 7037\n", "\\item[Rio Branco] 7808\n", "\\item[Manaus] 12642\n", "\\item[Boa Vista] 7995\n", "\\item[Belém] 13475\n", "\\item[Macapá] 6363\n", "\\item[Palmas] 6127\n", "\\item[São Luís] 17327\n", "\\item[Teresina] 8745\n", "\\item[Fortaleza] 14157\n", "\\item[Natal] 9472\n", "\\item[João Pessoa] 9652\n", "\\item[Recife] 11934\n", "\\item[Maceió] 9947\n", "\\item[Aracaju] 7803\n", "\\item[Salvador] 10516\n", "\\item[Belo Horizonte] 14831\n", "\\item[Vitória] 10078\n", "\\item[Rio de Janeiro] 13909\n", "\\item[São Paulo] 17522\n", "\\item[Curitiba] 11237\n", "\\item[Florianópolis] 10123\n", "\\item[Porto Alegre] 9878\n", "\\item[Campo Grande] 8350\n", "\\item[Cuiabá] 7291\n", "\\item[Goiânia] 8003\n", "\\item[Brasília] 7160\n", "\\end{description*}\n" ], "text/markdown": [ "Porto Velho\n", ": 7037Rio Branco\n", ": 7808Manaus\n", ": 12642Boa Vista\n", ": 7995Belém\n", ": 13475Macapá\n", ": 6363Palmas\n", ": 6127São Luís\n", ": 17327Teresina\n", ": 8745Fortaleza\n", ": 14157Natal\n", ": 9472João Pessoa\n", ": 9652Recife\n", ": 11934Maceió\n", ": 9947Aracaju\n", ": 7803Salvador\n", ": 10516Belo Horizonte\n", ": 14831Vitória\n", ": 10078Rio de Janeiro\n", ": 13909São Paulo\n", ": 17522Curitiba\n", ": 11237Florianópolis\n", ": 10123Porto Alegre\n", ": 9878Campo Grande\n", ": 8350Cuiabá\n", ": 7291Goiânia\n", ": 8003Brasília\n", ": 7160\n", "\n" ], "text/plain": [ " Porto Velho Rio Branco Manaus Boa Vista Belém \n", " 7037 7808 12642 7995 13475 \n", " Macapá Palmas São Luís Teresina Fortaleza \n", " 6363 6127 17327 8745 14157 \n", " Natal João Pessoa Recife Maceió Aracaju \n", " 9472 9652 11934 9947 7803 \n", " Salvador Belo Horizonte Vitória Rio de Janeiro São Paulo \n", " 10516 14831 10078 13909 17522 \n", " Curitiba Florianópolis Porto Alegre Campo Grande Cuiabá \n", " 11237 10123 9878 8350 7291 \n", " Goiânia Brasília \n", " 8003 7160 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Capital\n", "pns2019.1<- pns2019.1 %>% mutate(Capital= fct_collapse(Unidades_da_Federação,\n", " `Porto Velho`= \"Rondônia\", \n", " `Boa Vista`= \"Roraima\", \n", " `Rio Branco`= \"Acre\", \n", " `Manaus` = \"Amazonas\",\n", " `Belém` = \"Pará\" ,\n", " `Macapá`= \"Amapá\",\n", " `Palmas` = \"Tocantins\",\n", " `São Luís` = \"Maranhão\",\n", " `Teresina`= \"Piauí\" ,\n", " `Fortaleza`= \"Ceará\",\n", " `Natal`= \"Rio Grande do Norte\",\n", " `João Pessoa`= \"Paraíba\",\n", " `Recife`= \"Pernambuco\",\n", " `Maceió`= \"Alagoas\",\n", " `Aracaju`= \"Sergipe\",\n", " `Salvador`= \"Bahia\",\n", " `Belo Horizonte`= \"Minas Gerais\",\n", " `Vitória`= \"Espírito Santo\",\n", " `Rio de Janeiro`= \"Rio de Janeiro\",\n", " `São Paulo`= \"São Paulo\",\n", " `Curitiba`= \"Paraná\",\n", " `Florianópolis`= \"Santa Catarina\",\n", " `Porto Alegre`= \"Rio Grande do Sul\",\n", " `Campo Grande`= \"Mato Grosso do Sul\",\n", " `Cuiabá`= \"Mato Grosso\",\n", " `Goiânia` = \"Goiás\",\n", " `Brasília`= \"Distrito Federal\"))\n", "summary(pns2019.1$Capital)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Faixa Etária" ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Menor de 1 ano
3349
1 a 4 anos
14438
5 a 14 anos
40500
15 a 24 anos
43827
25 a 34 anos
39854
35 a 44 anos
41460
45 a 59 anos
52400
60 anos ou mais
43554
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Menor de 1 ano] 3349\n", "\\item[1 a 4 anos] 14438\n", "\\item[5 a 14 anos] 40500\n", "\\item[15 a 24 anos] 43827\n", "\\item[25 a 34 anos] 39854\n", "\\item[35 a 44 anos] 41460\n", "\\item[45 a 59 anos] 52400\n", "\\item[60 anos ou mais] 43554\n", "\\end{description*}\n" ], "text/markdown": [ "Menor de 1 ano\n", ": 33491 a 4 anos\n", ": 144385 a 14 anos\n", ": 4050015 a 24 anos\n", ": 4382725 a 34 anos\n", ": 3985435 a 44 anos\n", ": 4146045 a 59 anos\n", ": 5240060 anos ou mais\n", ": 43554\n", "\n" ], "text/plain": [ " Menor de 1 ano 1 a 4 anos 5 a 14 anos 15 a 24 anos 25 a 34 anos \n", " 3349 14438 40500 43827 39854 \n", " 35 a 44 anos 45 a 59 anos 60 anos ou mais \n", " 41460 52400 43554 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Faixas Etárias\n", "pns2019.1 <- pns2019.1 %>% mutate(faixa_idade = ifelse(C008<=0,1, \n", " ifelse(C008%in% 1:4, 2, \n", " ifelse(C008%in% 5:14, 3,\n", " ifelse(C008%in% 15:24, 4,\n", " ifelse(C008%in% 25:34, 5,\n", " ifelse(C008%in% 35:44, 6,\n", " ifelse(C008%in% 45:59, 7,8))))))))\n", "\n", "pns2019.1$faixa_idade<-factor(pns2019.1$faixa_idade, levels=c(1,2,3,4,5,6,7,8), labels=c(\"Menor de 1 ano\",\"1 a 4 anos\",\"5 a 14 anos\",\"15 a 24 anos\",\"25 a 34 anos\",\"35 a 44 anos\",\"45 a 59 anos\",\"60 anos ou mais\"))\n", "summary(pns2019.1$faixa_idade) " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Raça" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Branca
99019
Preta
28304
Parda
148273
NA's
3786
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Branca] 99019\n", "\\item[Preta] 28304\n", "\\item[Parda] 148273\n", "\\item[NA's] 3786\n", "\\end{description*}\n" ], "text/markdown": [ "Branca\n", ": 99019Preta\n", ": 28304Parda\n", ": 148273NA's\n", ": 3786\n", "\n" ], "text/plain": [ "Branca Preta Parda NA's \n", " 99019 28304 148273 3786 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Raça\n", "pns2019.1 <- pns2019.1 %>% mutate(Raca= ifelse(C009==1, 1, \n", " ifelse(C009==2, 2, \n", " ifelse(C009==4, 3, 9))))\n", "\n", "pns2019.1$Raca<-factor(pns2019.1$Raca, levels=c(1,2,3),labels=c(\"Branca\", \"Preta\", \"Parda\"))\n", "\n", "summary(pns2019.1$Raca)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Renda per capita" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Até 1/2 SM
91898
1/2 até 1 SM
81830
1 até 2 SM
61643
2 até 3 SM
19369
Mais de 3 SM
24470
NA's
172
\n" ], "text/latex": [ "\\begin{description*}\n", "\\item[Até 1/2 SM] 91898\n", "\\item[1/2 até 1 SM] 81830\n", "\\item[1 até 2 SM] 61643\n", "\\item[2 até 3 SM] 19369\n", "\\item[Mais de 3 SM] 24470\n", "\\item[NA's] 172\n", "\\end{description*}\n" ], "text/markdown": [ "Até 1/2 SM\n", ": 918981/2 até 1 SM\n", ": 818301 até 2 SM\n", ": 616432 até 3 SM\n", ": 19369Mais de 3 SM\n", ": 24470NA's\n", ": 172\n", "\n" ], "text/plain": [ " Até 1/2 SM 1/2 até 1 SM 1 até 2 SM 2 até 3 SM Mais de 3 SM NA's \n", " 91898 81830 61643 19369 24470 172 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Rendimento domiciliar per capita\n", "\n", "pns2019.1 <- pns2019.1 %>% mutate(rend_per_capita = ifelse(VDF004 %in% 1:2, 1, \n", " ifelse(VDF004%in% 3, 2, \n", " ifelse(VDF004%in% 4, 3,\n", " ifelse(VDF004%in% 5, 4,\n", " ifelse(VDF004==9,\"NA\",5))))))\n", "\n", "pns2019.1$rend_per_capita<-factor(pns2019.1$rend_per_capita, levels=c(1,2,3,4,5), labels=c(\"Até 1/2 SM\",\"1/2 até 1 SM\",\"1 até 2 SM\",\n", " \"2 até 3 SM\",\"Mais de 3 SM\"))\n", "summary(pns2019.1$rend_per_capita)\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Criando indicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Filtrando base de indicadores" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ " V0024 UPA_PNS peso_moradores I001P \n", " Min. :1110011 Min. :110000016 Min. : 0.01046 Sim: 65118 \n", " 1st Qu.:2152011 1st Qu.:210048674 1st Qu.: 0.31515 Não:214264 \n", " Median :2752010 Median :270027654 Median : 0.58914 \n", " Mean :2916319 Mean :288513887 Mean : 1.00000 \n", " 3rd Qu.:3522011 3rd Qu.:350367169 3rd Qu.: 1.16920 \n", " Max. :5310220 Max. :530051067 Max. :39.99838 \n", " \n", " I002P I003P V0031 C009 VDF004 \n", " Sim: 58597 Sim: 31511 Min. :1.000 Min. :1.000 Min. :1.000 \n", " Não:220785 Não:247871 1st Qu.:1.000 1st Qu.:1.000 1st Qu.:2.000 \n", " Median :2.000 Median :4.000 Median :3.000 \n", " Mean :2.608 Mean :2.736 Mean :3.197 \n", " 3rd Qu.:4.000 3rd Qu.:4.000 3rd Qu.:4.000 \n", " Max. :4.000 Max. :9.000 Max. :7.000 \n", " NA's :172 \n", " Situação_Urbano_Rural Sexo Unidades_da_Federação\n", " Urbano:212286 Masculino:134442 São Paulo : 17522 \n", " Rural : 67096 Feminino :144940 Maranhão : 17327 \n", " Minas Gerais : 14831 \n", " Ceará : 14157 \n", " Rio de Janeiro: 13909 \n", " Pará : 13475 \n", " (Other) :188161 \n", " GrandesRegioes Capital faixa_idade \n", " Norte :61447 São Paulo : 17522 45 a 59 anos :52400 \n", " Nordeste :99553 São Luís : 17327 15 a 24 anos :43827 \n", " Sudeste :56340 Belo Horizonte: 14831 60 anos ou mais:43554 \n", " Sul :31238 Fortaleza : 14157 35 a 44 anos :41460 \n", " Centro-Oeste:30804 Rio de Janeiro: 13909 5 a 14 anos :40500 \n", " Belém : 13475 25 a 34 anos :39854 \n", " (Other) :188161 (Other) :17787 \n", " Raca rend_per_capita \n", " Branca: 99019 Até 1/2 SM :91898 \n", " Preta : 28304 1/2 até 1 SM:81830 \n", " Parda :148273 1 até 2 SM :61643 \n", " NA's : 3786 2 até 3 SM :19369 \n", " Mais de 3 SM:24470 \n", " NA's : 172 \n", " " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "#Selecionando variáveis para cálculo de indicadores no survey\n", "pns2019survey<- pns2019.1 %>% select(\"V0024\",\"UPA_PNS\",\"peso_moradores\", \"I001P\",\"I002P\",\"I003P\", \"V0031\",\"C009\",\"VDF004\",\n", " \"Situação_Urbano_Rural\",\"Sexo\",\"Unidades_da_Federação\", \"GrandesRegioes\",\n", " \"Capital\",\"faixa_idade\", \"Raca\",\"rend_per_capita\")\n", "summary(pns2019survey)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Exporta tabela filtrada com os dados específicos - Módulo I 2019" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "#Salvando csv para cálculo de indicadores no survey\n", "diretorio_saida <- \"\"\n", "write.csv(pns2019survey, file.path(diretorio_saida, \"pns2019Isurvey.csv\"))" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Cria plano amostral complexo" ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [], "source": [ "#survey design\n", "desPNSI=svydesign(id=~UPA_PNS, strat=~V0024, weight=~peso_moradores, nest=TRUE, data=pns2019survey)\n", "desPNSIC=subset(desPNSI, V0031==1)\n", "desPNSIR=subset(desPNSI, C009!=9)\n", "desPNSIRE=subset(desPNSI, VDF004!=9)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Criação da tabela de indicadores\n", "Essa tabela é responsável por unir os indicadores no formato do painel de indicadores" ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores = data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Definição de variáveis para iteração dos indicadores" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "ListaIndicadores = c(~I001P,~I002P,~I003P)\n", "ListaIndicadoresTexto = c(\"I001P\",\"I002P\",\"I003P\")\n", "ListaDominios = c(~Sexo,~Raca,~rend_per_capita,~faixa_idade,~Situação_Urbano_Rural,~Unidades_da_Federação,~GrandesRegioes,~Capital)\n", "ListaDominiosTexto = c(\"Sexo\",\"raça\",\"rend_per_capita\",\"fx_idade\",\"urb_rur\",\"uf\",\"região\",\"capital\")\n", "ListaTotais = c('Brasil','Capital')\n", "Ano <- \"2019\"" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela de indicadores\n", "Essas iterações rodam por indicador, abrangência e por design" ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [], "source": [ "#Cálculo dos indicadores usando o pacote survey \n", "i <- 0\n", "#Para cada indicador\n", "for( indicador in ListaIndicadores){\n", " i <- i + 1\n", " j <- 1\n", "for (dominio in ListaDominios){\n", " #design especifico para capital que é subconjunto do dataframe total\n", " if (ListaDominiosTexto[j]==\"capital\"){\n", " dataframe_indicador<-svyby(indicador , dominio , desPNSIC , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #Uso design do subconjunto para raça/cor que inclui preta,branca e parda as outras \n", " #não possuiam dados suficientes para os dominios dos indicadores\n", " else if (ListaDominiosTexto[j]==\"raça\"){\n", " dataframe_indicador<-svyby(indicador , dominio , desPNSIR , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #Uso design do subconjunto para renda que exclui valores NULOS \n", " else if (ListaDominiosTexto[j]==\"rend_per_capita\"){\n", " dataframe_indicador<-svyby(indicador , dominio , desPNSIRE , svymean,vartype= c(\"ci\",\"cv\"))\n", " }\n", " #design geral para o subconjunto maior que 18 anos \n", " else {\n", " dataframe_indicador<-svyby(indicador , dominio , desPNSI , svymean,vartype= c(\"ci\",\"cv\"))\n", " \n", " }\n", " #União do dataframe de indicadores no formato do painel disponibilizado para PNS\n", " dataframe_indicador<-data.frame(dataframe_indicador)\n", " colnames(dataframe_indicador) <- c(\"abr_nome\",\"Sim\",\"Não\",\"LowerS\",\"LowerN\",\"UpperS\",\"UpperN\",\"cvS\",\"cvN\")\n", " dataframe_indicador$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador$abr_tipo <- ListaDominiosTexto[j]\n", " dataframe_indicador$Ano <- Ano\n", " dataframe_indicador <- dataframe_indicador %>% select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",\"cvS\")\n", " matrizIndicadores <-rbind(matrizIndicadores,dataframe_indicador)\n", " j <- j + 1\n", " \n", " }\n", "\n", "}\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Criando a tabela pela abrangência total" ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [], "source": [ "matriz_totais <- data.frame()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Preenchendo a tabela com as abrangencia Brasil e total das capitais" ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [], "source": [ "i=0\n", "for(indicador in ListaIndicadores){\n", " i <- i+1\n", " for(total in ListaTotais){\n", " dataframe_indicador <- data.frame()\n", " dataframe_indicador_S <- data.frame()\n", " if(total == 'Capital'){\n", " dataframe_indicador <- svymean(indicador,desPNSIC)\n", " }else{\n", " dataframe_indicador <- svymean(indicador,desPNSI)\n", " }\n", " intervalo_confianca <- confint(dataframe_indicador)\n", " coeficiente_variacao <- cv(dataframe_indicador)\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(intervalo_confianca))\n", " dataframe_indicador <- cbind(data.frame(dataframe_indicador),data.frame(coeficiente_variacao))\n", " \n", " dataframe_indicador <- dataframe_indicador %>% \n", " select('mean','X2.5..','X97.5..',coeficiente_variacao) \n", " dataframe_indicador_S <- dataframe_indicador %>% \n", " slice(1)\n", " \n", " colnames(dataframe_indicador_S) <- c('Sim','LowerS','UpperS', 'cvS')\n", " dataframe_indicador_S$Indicador <- ListaIndicadoresTexto[i]\n", " dataframe_indicador_S$abr_tipo <- \"total\"\n", " dataframe_indicador_S$abr_nome <- total\n", " dataframe_indicador_S$Ano <- Ano \n", " dataframe_indicador_S <- dataframe_indicador_S %>% \n", " select(\"abr_tipo\",\"abr_nome\",\"Ano\",\"Indicador\",\"Sim\",\"LowerS\",\"UpperS\",'cvS')\n", " \n", " matriz_totais <-rbind(matriz_totais,dataframe_indicador_S)\n", " \n", " }\n", "}\n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Unindo tabela de indicadores e de totais" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [], "source": [ "matrizIndicadores<-rbind(matrizIndicadores,matriz_totais)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Visualizando tabela de indicadores" ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "data": { "text/html": [ "\n", "\n", "\n", "\t\n", "\t\n", "\n", "\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\t\n", "\n", "
A data.frame: 243 × 8
abr_tipoabr_nomeAnoIndicadorSimLowerSUpperScvS
<chr><fct><chr><chr><dbl><dbl><dbl><dbl>
MasculinoSexo Masculino 2019I001P0.273886500.266253070.281519920.014220036
FemininoSexo Feminino 2019I001P0.295085540.287616890.302554200.012913572
Brancaraça Branca 2019I001P0.388023390.376992910.399053860.014504020
Pretaraça Preta 2019I001P0.214236040.202904900.225567180.026985658
Pardaraça Parda 2019I001P0.200993620.194720770.207266470.015923352
Até 1/2 SMrend_per_capitaAté 1/2 SM 2019I001P0.058253180.053660520.062845850.040225086
1/2 até 1 SMrend_per_capita1/2 até 1 SM 2019I001P0.176531240.168488170.184574310.023246217
1 até 2 SMrend_per_capita1 até 2 SM 2019I001P0.357485280.346935000.368035560.015057667
2 até 3 SMrend_per_capita2 até 3 SM 2019I001P0.548228040.529785370.566670720.017163845
Mais de 3 SMrend_per_capitaMais de 3 SM 2019I001P0.792306900.779940870.804672920.007963219
Menor de 1 anofx_idade Menor de 1 ano 2019I001P0.273243750.245419750.301067760.051954282
1 a 4 anosfx_idade 1 a 4 anos 2019I001P0.281488820.266268710.296708920.027587250
5 a 14 anosfx_idade 5 a 14 anos 2019I001P0.251533480.240676040.262390920.022023359
15 a 24 anosfx_idade 15 a 24 anos 2019I001P0.234094220.225060880.243127560.019688363
25 a 34 anosfx_idade 25 a 34 anos 2019I001P0.297032770.286012330.308053210.018929825
35 a 44 anosfx_idade 35 a 44 anos 2019I001P0.325929190.314009640.337848750.018659011
45 a 59 anosfx_idade 45 a 59 anos 2019I001P0.293651280.283050720.304251830.018418260
60 anos ou maisfx_idade 60 anos ou mais2019I001P0.302146410.291539270.312753550.017911533
Urbanourb_rur Urbano 2019I001P0.321620830.313253730.329987940.013273418
Ruralurb_rur Rural 2019I001P0.070139190.063095880.077182500.051235138
Rondôniauf Rondônia 2019I001P0.137657730.117806790.157508670.073575358
Acreuf Acre 2019I001P0.095645270.081045910.110244620.077879315
Amazonasuf Amazonas 2019I001P0.162625790.142264850.182986730.063879330
Roraimauf Roraima 2019I001P0.082701070.061206690.104195440.132606751
Paráuf Pará 2019I001P0.157349340.135299860.179398820.071496582
Amapáuf Amapá 2019I001P0.120257010.097690340.142823690.095743452
Tocantinsuf Tocantins 2019I001P0.130938360.104019680.157857040.104891131
Maranhãouf Maranhão 2019I001P0.064748900.056370500.073127300.066020806
Piauíuf Piauí 2019I001P0.167039970.141371650.192708300.078402336
Cearáuf Ceará 2019I001P0.183051570.168197940.197905200.041401017
Boa Vista2capitalBoa Vista 2019I003P0.05174980.035074240.068425360.16440829
Belém2capitalBelém 2019I003P0.19573520.156979720.234490690.10102204
Macapá2capitalMacapá 2019I003P0.10302440.074685660.131363240.14034369
Palmas2capitalPalmas 2019I003P0.11742630.082279110.152573540.15271348
São Luís2capitalSão Luís 2019I003P0.11622250.092100030.140345040.10589709
Teresina2capitalTeresina 2019I003P0.12447090.103606340.145335400.08552493
Fortaleza2capitalFortaleza 2019I003P0.23866100.212318930.265003070.05631451
Natal2capitalNatal 2019I003P0.20551420.173302380.237726060.07996972
João Pessoa2capitalJoão Pessoa 2019I003P0.24262740.206036390.279218360.07694603
Recife2capitalRecife 2019I003P0.25251450.211822560.293206340.08221925
Maceió2capitalMaceió 2019I003P0.21051490.180167140.240862740.07355229
Aracaju2capitalAracaju 2019I003P0.25088890.209073760.292704010.08503620
Salvador2capitalSalvador 2019I003P0.25183120.217634400.286028000.06928319
Belo Horizonte2capitalBelo Horizonte2019I003P0.22321490.194647820.251781910.06529713
Vitória2capitalVitória 2019I003P0.24426120.211458480.277064010.06851849
Rio de Janeiro5capitalRio de Janeiro2019I003P0.24242490.217671840.267177900.05209585
São Paulo4capitalSão Paulo 2019I003P0.17255440.151702500.193406370.06165555
Curitiba2capitalCuritiba 2019I003P0.27155160.232078580.311024560.07416511
Florianópolis2capitalFlorianópolis 2019I003P0.21696660.184245740.249687540.07694567
Porto Alegre2capitalPorto Alegre 2019I003P0.24025890.199899650.280618130.08570683
Campo Grande2capitalCampo Grande 2019I003P0.22879300.198566580.259019340.06740551
Cuiabá2capitalCuiabá 2019I003P0.11685750.094579070.139135900.09727016
Goiânia2capitalGoiânia 2019I003P0.18628130.156991380.215571200.08022334
Brasília2capitalBrasília 2019I003P0.22694300.194727560.259158460.07242679
I001PSimtotal Brasil 2019I001P0.28495500.277728570.292181430.01293896
I001PSim1total Capital 2019I001P0.42386570.411157980.436573470.01529650
I002PSimtotal Brasil 2019I002P0.26045170.253252360.267651080.01410323
I002PSim1total Capital 2019I002P0.39335670.380414980.406298350.01678635
I003PSimtotal Brasil 2019I003P0.12727710.122804930.131749260.01792748
I003PSim1total Capital 2019I003P0.20486130.197000240.212722380.01957825
\n" ], "text/latex": [ "A data.frame: 243 × 8\n", "\\begin{tabular}{r|llllllll}\n", " & abr\\_tipo & abr\\_nome & Ano & Indicador & Sim & LowerS & UpperS & cvS\\\\\n", " & & & & & & & & \\\\\n", "\\hline\n", "\tMasculino & Sexo & Masculino & 2019 & I001P & 0.27388650 & 0.26625307 & 0.28151992 & 0.014220036\\\\\n", "\tFeminino & Sexo & Feminino & 2019 & I001P & 0.29508554 & 0.28761689 & 0.30255420 & 0.012913572\\\\\n", "\tBranca & raça & Branca & 2019 & I001P & 0.38802339 & 0.37699291 & 0.39905386 & 0.014504020\\\\\n", "\tPreta & raça & Preta & 2019 & I001P & 0.21423604 & 0.20290490 & 0.22556718 & 0.026985658\\\\\n", "\tParda & raça & Parda & 2019 & I001P & 0.20099362 & 0.19472077 & 0.20726647 & 0.015923352\\\\\n", "\tAté 1/2 SM & rend\\_per\\_capita & Até 1/2 SM & 2019 & I001P & 0.05825318 & 0.05366052 & 0.06284585 & 0.040225086\\\\\n", "\t1/2 até 1 SM & rend\\_per\\_capita & 1/2 até 1 SM & 2019 & I001P & 0.17653124 & 0.16848817 & 0.18457431 & 0.023246217\\\\\n", "\t1 até 2 SM & rend\\_per\\_capita & 1 até 2 SM & 2019 & I001P & 0.35748528 & 0.34693500 & 0.36803556 & 0.015057667\\\\\n", "\t2 até 3 SM & rend\\_per\\_capita & 2 até 3 SM & 2019 & I001P & 0.54822804 & 0.52978537 & 0.56667072 & 0.017163845\\\\\n", "\tMais de 3 SM & rend\\_per\\_capita & Mais de 3 SM & 2019 & I001P & 0.79230690 & 0.77994087 & 0.80467292 & 0.007963219\\\\\n", "\tMenor de 1 ano & fx\\_idade & Menor de 1 ano & 2019 & I001P & 0.27324375 & 0.24541975 & 0.30106776 & 0.051954282\\\\\n", "\t1 a 4 anos & fx\\_idade & 1 a 4 anos & 2019 & I001P & 0.28148882 & 0.26626871 & 0.29670892 & 0.027587250\\\\\n", "\t5 a 14 anos & fx\\_idade & 5 a 14 anos & 2019 & I001P & 0.25153348 & 0.24067604 & 0.26239092 & 0.022023359\\\\\n", "\t15 a 24 anos & fx\\_idade & 15 a 24 anos & 2019 & I001P & 0.23409422 & 0.22506088 & 0.24312756 & 0.019688363\\\\\n", "\t25 a 34 anos & fx\\_idade & 25 a 34 anos & 2019 & I001P & 0.29703277 & 0.28601233 & 0.30805321 & 0.018929825\\\\\n", "\t35 a 44 anos & fx\\_idade & 35 a 44 anos & 2019 & I001P & 0.32592919 & 0.31400964 & 0.33784875 & 0.018659011\\\\\n", "\t45 a 59 anos & fx\\_idade & 45 a 59 anos & 2019 & I001P & 0.29365128 & 0.28305072 & 0.30425183 & 0.018418260\\\\\n", "\t60 anos ou mais & fx\\_idade & 60 anos ou mais & 2019 & I001P & 0.30214641 & 0.29153927 & 0.31275355 & 0.017911533\\\\\n", "\tUrbano & urb\\_rur & Urbano & 2019 & I001P & 0.32162083 & 0.31325373 & 0.32998794 & 0.013273418\\\\\n", "\tRural & urb\\_rur & Rural & 2019 & I001P & 0.07013919 & 0.06309588 & 0.07718250 & 0.051235138\\\\\n", "\tRondônia & uf & Rondônia & 2019 & I001P & 0.13765773 & 0.11780679 & 0.15750867 & 0.073575358\\\\\n", "\tAcre & uf & Acre & 2019 & I001P & 0.09564527 & 0.08104591 & 0.11024462 & 0.077879315\\\\\n", "\tAmazonas & uf & Amazonas & 2019 & I001P & 0.16262579 & 0.14226485 & 0.18298673 & 0.063879330\\\\\n", "\tRoraima & uf & Roraima & 2019 & I001P & 0.08270107 & 0.06120669 & 0.10419544 & 0.132606751\\\\\n", "\tPará & uf & Pará & 2019 & I001P & 0.15734934 & 0.13529986 & 0.17939882 & 0.071496582\\\\\n", "\tAmapá & uf & Amapá & 2019 & I001P & 0.12025701 & 0.09769034 & 0.14282369 & 0.095743452\\\\\n", "\tTocantins & uf & Tocantins & 2019 & I001P & 0.13093836 & 0.10401968 & 0.15785704 & 0.104891131\\\\\n", "\tMaranhão & uf & Maranhão & 2019 & I001P & 0.06474890 & 0.05637050 & 0.07312730 & 0.066020806\\\\\n", "\tPiauí & uf & Piauí & 2019 & I001P & 0.16703997 & 0.14137165 & 0.19270830 & 0.078402336\\\\\n", "\tCeará & uf & Ceará & 2019 & I001P & 0.18305157 & 0.16819794 & 0.19790520 & 0.041401017\\\\\n", "\t⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮ & ⋮\\\\\n", "\tBoa Vista2 & capital & Boa Vista & 2019 & I003P & 0.0517498 & 0.03507424 & 0.06842536 & 0.16440829\\\\\n", "\tBelém2 & capital & Belém & 2019 & I003P & 0.1957352 & 0.15697972 & 0.23449069 & 0.10102204\\\\\n", "\tMacapá2 & capital & Macapá & 2019 & I003P & 0.1030244 & 0.07468566 & 0.13136324 & 0.14034369\\\\\n", "\tPalmas2 & capital & Palmas & 2019 & I003P & 0.1174263 & 0.08227911 & 0.15257354 & 0.15271348\\\\\n", "\tSão Luís2 & capital & São Luís & 2019 & I003P & 0.1162225 & 0.09210003 & 0.14034504 & 0.10589709\\\\\n", "\tTeresina2 & capital & Teresina & 2019 & I003P & 0.1244709 & 0.10360634 & 0.14533540 & 0.08552493\\\\\n", "\tFortaleza2 & capital & Fortaleza & 2019 & I003P & 0.2386610 & 0.21231893 & 0.26500307 & 0.05631451\\\\\n", "\tNatal2 & capital & Natal & 2019 & I003P & 0.2055142 & 0.17330238 & 0.23772606 & 0.07996972\\\\\n", "\tJoão Pessoa2 & capital & João Pessoa & 2019 & I003P & 0.2426274 & 0.20603639 & 0.27921836 & 0.07694603\\\\\n", "\tRecife2 & capital & Recife & 2019 & I003P & 0.2525145 & 0.21182256 & 0.29320634 & 0.08221925\\\\\n", "\tMaceió2 & capital & Maceió & 2019 & I003P & 0.2105149 & 0.18016714 & 0.24086274 & 0.07355229\\\\\n", "\tAracaju2 & capital & Aracaju & 2019 & I003P & 0.2508889 & 0.20907376 & 0.29270401 & 0.08503620\\\\\n", "\tSalvador2 & capital & Salvador & 2019 & I003P & 0.2518312 & 0.21763440 & 0.28602800 & 0.06928319\\\\\n", "\tBelo Horizonte2 & capital & Belo Horizonte & 2019 & I003P & 0.2232149 & 0.19464782 & 0.25178191 & 0.06529713\\\\\n", "\tVitória2 & capital & Vitória & 2019 & I003P & 0.2442612 & 0.21145848 & 0.27706401 & 0.06851849\\\\\n", "\tRio de Janeiro5 & capital & Rio de Janeiro & 2019 & I003P & 0.2424249 & 0.21767184 & 0.26717790 & 0.05209585\\\\\n", "\tSão Paulo4 & capital & São Paulo & 2019 & I003P & 0.1725544 & 0.15170250 & 0.19340637 & 0.06165555\\\\\n", "\tCuritiba2 & capital & Curitiba & 2019 & I003P & 0.2715516 & 0.23207858 & 0.31102456 & 0.07416511\\\\\n", "\tFlorianópolis2 & capital & Florianópolis & 2019 & I003P & 0.2169666 & 0.18424574 & 0.24968754 & 0.07694567\\\\\n", "\tPorto Alegre2 & capital & Porto Alegre & 2019 & I003P & 0.2402589 & 0.19989965 & 0.28061813 & 0.08570683\\\\\n", "\tCampo Grande2 & capital & Campo Grande & 2019 & I003P & 0.2287930 & 0.19856658 & 0.25901934 & 0.06740551\\\\\n", "\tCuiabá2 & capital & Cuiabá & 2019 & I003P & 0.1168575 & 0.09457907 & 0.13913590 & 0.09727016\\\\\n", "\tGoiânia2 & capital & Goiânia & 2019 & I003P & 0.1862813 & 0.15699138 & 0.21557120 & 0.08022334\\\\\n", "\tBrasília2 & capital & Brasília & 2019 & I003P & 0.2269430 & 0.19472756 & 0.25915846 & 0.07242679\\\\\n", "\tI001PSim & total & Brasil & 2019 & I001P & 0.2849550 & 0.27772857 & 0.29218143 & 0.01293896\\\\\n", "\tI001PSim1 & total & Capital & 2019 & I001P & 0.4238657 & 0.41115798 & 0.43657347 & 0.01529650\\\\\n", "\tI002PSim & total & Brasil & 2019 & I002P & 0.2604517 & 0.25325236 & 0.26765108 & 0.01410323\\\\\n", "\tI002PSim1 & total & Capital & 2019 & I002P & 0.3933567 & 0.38041498 & 0.40629835 & 0.01678635\\\\\n", "\tI003PSim & total & Brasil & 2019 & I003P & 0.1272771 & 0.12280493 & 0.13174926 & 0.01792748\\\\\n", "\tI003PSim1 & total & Capital & 2019 & I003P & 0.2048613 & 0.19700024 & 0.21272238 & 0.01957825\\\\\n", "\\end{tabular}\n" ], "text/markdown": [ "\n", "A data.frame: 243 × 8\n", "\n", "| | abr_tipo <chr> | abr_nome <fct> | Ano <chr> | Indicador <chr> | Sim <dbl> | LowerS <dbl> | UpperS <dbl> | cvS <dbl> |\n", "|---|---|---|---|---|---|---|---|---|\n", "| Masculino | Sexo | Masculino | 2019 | I001P | 0.27388650 | 0.26625307 | 0.28151992 | 0.014220036 |\n", "| Feminino | Sexo | Feminino | 2019 | I001P | 0.29508554 | 0.28761689 | 0.30255420 | 0.012913572 |\n", "| Branca | raça | Branca | 2019 | I001P | 0.38802339 | 0.37699291 | 0.39905386 | 0.014504020 |\n", "| Preta | raça | Preta | 2019 | I001P | 0.21423604 | 0.20290490 | 0.22556718 | 0.026985658 |\n", "| Parda | raça | Parda | 2019 | I001P | 0.20099362 | 0.19472077 | 0.20726647 | 0.015923352 |\n", "| Até 1/2 SM | rend_per_capita | Até 1/2 SM | 2019 | I001P | 0.05825318 | 0.05366052 | 0.06284585 | 0.040225086 |\n", "| 1/2 até 1 SM | rend_per_capita | 1/2 até 1 SM | 2019 | I001P | 0.17653124 | 0.16848817 | 0.18457431 | 0.023246217 |\n", "| 1 até 2 SM | rend_per_capita | 1 até 2 SM | 2019 | I001P | 0.35748528 | 0.34693500 | 0.36803556 | 0.015057667 |\n", "| 2 até 3 SM | rend_per_capita | 2 até 3 SM | 2019 | I001P | 0.54822804 | 0.52978537 | 0.56667072 | 0.017163845 |\n", "| Mais de 3 SM | rend_per_capita | Mais de 3 SM | 2019 | I001P | 0.79230690 | 0.77994087 | 0.80467292 | 0.007963219 |\n", "| Menor de 1 ano | fx_idade | Menor de 1 ano | 2019 | I001P | 0.27324375 | 0.24541975 | 0.30106776 | 0.051954282 |\n", "| 1 a 4 anos | fx_idade | 1 a 4 anos | 2019 | I001P | 0.28148882 | 0.26626871 | 0.29670892 | 0.027587250 |\n", "| 5 a 14 anos | fx_idade | 5 a 14 anos | 2019 | I001P | 0.25153348 | 0.24067604 | 0.26239092 | 0.022023359 |\n", "| 15 a 24 anos | fx_idade | 15 a 24 anos | 2019 | I001P | 0.23409422 | 0.22506088 | 0.24312756 | 0.019688363 |\n", "| 25 a 34 anos | fx_idade | 25 a 34 anos | 2019 | I001P | 0.29703277 | 0.28601233 | 0.30805321 | 0.018929825 |\n", "| 35 a 44 anos | fx_idade | 35 a 44 anos | 2019 | I001P | 0.32592919 | 0.31400964 | 0.33784875 | 0.018659011 |\n", "| 45 a 59 anos | fx_idade | 45 a 59 anos | 2019 | I001P | 0.29365128 | 0.28305072 | 0.30425183 | 0.018418260 |\n", "| 60 anos ou mais | fx_idade | 60 anos ou mais | 2019 | I001P | 0.30214641 | 0.29153927 | 0.31275355 | 0.017911533 |\n", "| Urbano | urb_rur | Urbano | 2019 | I001P | 0.32162083 | 0.31325373 | 0.32998794 | 0.013273418 |\n", "| Rural | urb_rur | Rural | 2019 | I001P | 0.07013919 | 0.06309588 | 0.07718250 | 0.051235138 |\n", "| Rondônia | uf | Rondônia | 2019 | I001P | 0.13765773 | 0.11780679 | 0.15750867 | 0.073575358 |\n", "| Acre | uf | Acre | 2019 | I001P | 0.09564527 | 0.08104591 | 0.11024462 | 0.077879315 |\n", "| Amazonas | uf | Amazonas | 2019 | I001P | 0.16262579 | 0.14226485 | 0.18298673 | 0.063879330 |\n", "| Roraima | uf | Roraima | 2019 | I001P | 0.08270107 | 0.06120669 | 0.10419544 | 0.132606751 |\n", "| Pará | uf | Pará | 2019 | I001P | 0.15734934 | 0.13529986 | 0.17939882 | 0.071496582 |\n", "| Amapá | uf | Amapá | 2019 | I001P | 0.12025701 | 0.09769034 | 0.14282369 | 0.095743452 |\n", "| Tocantins | uf | Tocantins | 2019 | I001P | 0.13093836 | 0.10401968 | 0.15785704 | 0.104891131 |\n", "| Maranhão | uf | Maranhão | 2019 | I001P | 0.06474890 | 0.05637050 | 0.07312730 | 0.066020806 |\n", "| Piauí | uf | Piauí | 2019 | I001P | 0.16703997 | 0.14137165 | 0.19270830 | 0.078402336 |\n", "| Ceará | uf | Ceará | 2019 | I001P | 0.18305157 | 0.16819794 | 0.19790520 | 0.041401017 |\n", "| ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ | ⋮ |\n", "| Boa Vista2 | capital | Boa Vista | 2019 | I003P | 0.0517498 | 0.03507424 | 0.06842536 | 0.16440829 |\n", "| Belém2 | capital | Belém | 2019 | I003P | 0.1957352 | 0.15697972 | 0.23449069 | 0.10102204 |\n", "| Macapá2 | capital | Macapá | 2019 | I003P | 0.1030244 | 0.07468566 | 0.13136324 | 0.14034369 |\n", "| Palmas2 | capital | Palmas | 2019 | I003P | 0.1174263 | 0.08227911 | 0.15257354 | 0.15271348 |\n", "| São Luís2 | capital | São Luís | 2019 | I003P | 0.1162225 | 0.09210003 | 0.14034504 | 0.10589709 |\n", "| Teresina2 | capital | Teresina | 2019 | I003P | 0.1244709 | 0.10360634 | 0.14533540 | 0.08552493 |\n", "| Fortaleza2 | capital | Fortaleza | 2019 | I003P | 0.2386610 | 0.21231893 | 0.26500307 | 0.05631451 |\n", "| Natal2 | capital | Natal | 2019 | I003P | 0.2055142 | 0.17330238 | 0.23772606 | 0.07996972 |\n", "| João Pessoa2 | capital | João Pessoa | 2019 | I003P | 0.2426274 | 0.20603639 | 0.27921836 | 0.07694603 |\n", "| Recife2 | capital | Recife | 2019 | I003P | 0.2525145 | 0.21182256 | 0.29320634 | 0.08221925 |\n", "| Maceió2 | capital | Maceió | 2019 | I003P | 0.2105149 | 0.18016714 | 0.24086274 | 0.07355229 |\n", "| Aracaju2 | capital | Aracaju | 2019 | I003P | 0.2508889 | 0.20907376 | 0.29270401 | 0.08503620 |\n", "| Salvador2 | capital | Salvador | 2019 | I003P | 0.2518312 | 0.21763440 | 0.28602800 | 0.06928319 |\n", "| Belo Horizonte2 | capital | Belo Horizonte | 2019 | I003P | 0.2232149 | 0.19464782 | 0.25178191 | 0.06529713 |\n", "| Vitória2 | capital | Vitória | 2019 | I003P | 0.2442612 | 0.21145848 | 0.27706401 | 0.06851849 |\n", "| Rio de Janeiro5 | capital | Rio de Janeiro | 2019 | I003P | 0.2424249 | 0.21767184 | 0.26717790 | 0.05209585 |\n", "| São Paulo4 | capital | São Paulo | 2019 | I003P | 0.1725544 | 0.15170250 | 0.19340637 | 0.06165555 |\n", "| Curitiba2 | capital | Curitiba | 2019 | I003P | 0.2715516 | 0.23207858 | 0.31102456 | 0.07416511 |\n", "| Florianópolis2 | capital | Florianópolis | 2019 | I003P | 0.2169666 | 0.18424574 | 0.24968754 | 0.07694567 |\n", "| Porto Alegre2 | capital | Porto Alegre | 2019 | I003P | 0.2402589 | 0.19989965 | 0.28061813 | 0.08570683 |\n", "| Campo Grande2 | capital | Campo Grande | 2019 | I003P | 0.2287930 | 0.19856658 | 0.25901934 | 0.06740551 |\n", "| Cuiabá2 | capital | Cuiabá | 2019 | I003P | 0.1168575 | 0.09457907 | 0.13913590 | 0.09727016 |\n", "| Goiânia2 | capital | Goiânia | 2019 | I003P | 0.1862813 | 0.15699138 | 0.21557120 | 0.08022334 |\n", "| Brasília2 | capital | Brasília | 2019 | I003P | 0.2269430 | 0.19472756 | 0.25915846 | 0.07242679 |\n", "| I001PSim | total | Brasil | 2019 | I001P | 0.2849550 | 0.27772857 | 0.29218143 | 0.01293896 |\n", "| I001PSim1 | total | Capital | 2019 | I001P | 0.4238657 | 0.41115798 | 0.43657347 | 0.01529650 |\n", "| I002PSim | total | Brasil | 2019 | I002P | 0.2604517 | 0.25325236 | 0.26765108 | 0.01410323 |\n", "| I002PSim1 | total | Capital | 2019 | I002P | 0.3933567 | 0.38041498 | 0.40629835 | 0.01678635 |\n", "| I003PSim | total | Brasil | 2019 | I003P | 0.1272771 | 0.12280493 | 0.13174926 | 0.01792748 |\n", "| I003PSim1 | total | Capital | 2019 | I003P | 0.2048613 | 0.19700024 | 0.21272238 | 0.01957825 |\n", "\n" ], "text/plain": [ " abr_tipo abr_nome Ano Indicador Sim \n", "Masculino Sexo Masculino 2019 I001P 0.27388650\n", "Feminino Sexo Feminino 2019 I001P 0.29508554\n", "Branca raça Branca 2019 I001P 0.38802339\n", "Preta raça Preta 2019 I001P 0.21423604\n", "Parda raça Parda 2019 I001P 0.20099362\n", "Até 1/2 SM rend_per_capita Até 1/2 SM 2019 I001P 0.05825318\n", "1/2 até 1 SM rend_per_capita 1/2 até 1 SM 2019 I001P 0.17653124\n", "1 até 2 SM rend_per_capita 1 até 2 SM 2019 I001P 0.35748528\n", "2 até 3 SM rend_per_capita 2 até 3 SM 2019 I001P 0.54822804\n", "Mais de 3 SM rend_per_capita Mais de 3 SM 2019 I001P 0.79230690\n", "Menor de 1 ano fx_idade Menor de 1 ano 2019 I001P 0.27324375\n", "1 a 4 anos fx_idade 1 a 4 anos 2019 I001P 0.28148882\n", "5 a 14 anos fx_idade 5 a 14 anos 2019 I001P 0.25153348\n", "15 a 24 anos fx_idade 15 a 24 anos 2019 I001P 0.23409422\n", "25 a 34 anos fx_idade 25 a 34 anos 2019 I001P 0.29703277\n", "35 a 44 anos fx_idade 35 a 44 anos 2019 I001P 0.32592919\n", "45 a 59 anos fx_idade 45 a 59 anos 2019 I001P 0.29365128\n", "60 anos ou mais fx_idade 60 anos ou mais 2019 I001P 0.30214641\n", "Urbano urb_rur Urbano 2019 I001P 0.32162083\n", "Rural urb_rur Rural 2019 I001P 0.07013919\n", "Rondônia uf Rondônia 2019 I001P 0.13765773\n", "Acre uf Acre 2019 I001P 0.09564527\n", "Amazonas uf Amazonas 2019 I001P 0.16262579\n", "Roraima uf Roraima 2019 I001P 0.08270107\n", "Pará uf Pará 2019 I001P 0.15734934\n", "Amapá uf Amapá 2019 I001P 0.12025701\n", "Tocantins uf Tocantins 2019 I001P 0.13093836\n", "Maranhão uf Maranhão 2019 I001P 0.06474890\n", "Piauí uf Piauí 2019 I001P 0.16703997\n", "Ceará uf Ceará 2019 I001P 0.18305157\n", "⋮ ⋮ ⋮ ⋮ ⋮ ⋮ \n", "Boa Vista2 capital Boa Vista 2019 I003P 0.0517498 \n", "Belém2 capital Belém 2019 I003P 0.1957352 \n", "Macapá2 capital Macapá 2019 I003P 0.1030244 \n", "Palmas2 capital Palmas 2019 I003P 0.1174263 \n", "São Luís2 capital São Luís 2019 I003P 0.1162225 \n", "Teresina2 capital Teresina 2019 I003P 0.1244709 \n", "Fortaleza2 capital Fortaleza 2019 I003P 0.2386610 \n", "Natal2 capital Natal 2019 I003P 0.2055142 \n", "João Pessoa2 capital João Pessoa 2019 I003P 0.2426274 \n", "Recife2 capital Recife 2019 I003P 0.2525145 \n", "Maceió2 capital Maceió 2019 I003P 0.2105149 \n", "Aracaju2 capital Aracaju 2019 I003P 0.2508889 \n", "Salvador2 capital Salvador 2019 I003P 0.2518312 \n", "Belo Horizonte2 capital Belo Horizonte 2019 I003P 0.2232149 \n", "Vitória2 capital Vitória 2019 I003P 0.2442612 \n", "Rio de Janeiro5 capital Rio de Janeiro 2019 I003P 0.2424249 \n", "São Paulo4 capital São Paulo 2019 I003P 0.1725544 \n", "Curitiba2 capital Curitiba 2019 I003P 0.2715516 \n", "Florianópolis2 capital Florianópolis 2019 I003P 0.2169666 \n", "Porto Alegre2 capital Porto Alegre 2019 I003P 0.2402589 \n", "Campo Grande2 capital Campo Grande 2019 I003P 0.2287930 \n", "Cuiabá2 capital Cuiabá 2019 I003P 0.1168575 \n", "Goiânia2 capital Goiânia 2019 I003P 0.1862813 \n", "Brasília2 capital Brasília 2019 I003P 0.2269430 \n", "I001PSim total Brasil 2019 I001P 0.2849550 \n", "I001PSim1 total Capital 2019 I001P 0.4238657 \n", "I002PSim total Brasil 2019 I002P 0.2604517 \n", "I002PSim1 total Capital 2019 I002P 0.3933567 \n", "I003PSim total Brasil 2019 I003P 0.1272771 \n", "I003PSim1 total Capital 2019 I003P 0.2048613 \n", " LowerS UpperS cvS \n", "Masculino 0.26625307 0.28151992 0.014220036\n", "Feminino 0.28761689 0.30255420 0.012913572\n", "Branca 0.37699291 0.39905386 0.014504020\n", "Preta 0.20290490 0.22556718 0.026985658\n", "Parda 0.19472077 0.20726647 0.015923352\n", "Até 1/2 SM 0.05366052 0.06284585 0.040225086\n", "1/2 até 1 SM 0.16848817 0.18457431 0.023246217\n", "1 até 2 SM 0.34693500 0.36803556 0.015057667\n", "2 até 3 SM 0.52978537 0.56667072 0.017163845\n", "Mais de 3 SM 0.77994087 0.80467292 0.007963219\n", "Menor de 1 ano 0.24541975 0.30106776 0.051954282\n", "1 a 4 anos 0.26626871 0.29670892 0.027587250\n", "5 a 14 anos 0.24067604 0.26239092 0.022023359\n", "15 a 24 anos 0.22506088 0.24312756 0.019688363\n", "25 a 34 anos 0.28601233 0.30805321 0.018929825\n", "35 a 44 anos 0.31400964 0.33784875 0.018659011\n", "45 a 59 anos 0.28305072 0.30425183 0.018418260\n", "60 anos ou mais 0.29153927 0.31275355 0.017911533\n", "Urbano 0.31325373 0.32998794 0.013273418\n", "Rural 0.06309588 0.07718250 0.051235138\n", "Rondônia 0.11780679 0.15750867 0.073575358\n", "Acre 0.08104591 0.11024462 0.077879315\n", "Amazonas 0.14226485 0.18298673 0.063879330\n", "Roraima 0.06120669 0.10419544 0.132606751\n", "Pará 0.13529986 0.17939882 0.071496582\n", "Amapá 0.09769034 0.14282369 0.095743452\n", "Tocantins 0.10401968 0.15785704 0.104891131\n", "Maranhão 0.05637050 0.07312730 0.066020806\n", "Piauí 0.14137165 0.19270830 0.078402336\n", "Ceará 0.16819794 0.19790520 0.041401017\n", "⋮ ⋮ ⋮ ⋮ \n", "Boa Vista2 0.03507424 0.06842536 0.16440829 \n", "Belém2 0.15697972 0.23449069 0.10102204 \n", "Macapá2 0.07468566 0.13136324 0.14034369 \n", "Palmas2 0.08227911 0.15257354 0.15271348 \n", "São Luís2 0.09210003 0.14034504 0.10589709 \n", "Teresina2 0.10360634 0.14533540 0.08552493 \n", "Fortaleza2 0.21231893 0.26500307 0.05631451 \n", "Natal2 0.17330238 0.23772606 0.07996972 \n", "João Pessoa2 0.20603639 0.27921836 0.07694603 \n", "Recife2 0.21182256 0.29320634 0.08221925 \n", "Maceió2 0.18016714 0.24086274 0.07355229 \n", "Aracaju2 0.20907376 0.29270401 0.08503620 \n", "Salvador2 0.21763440 0.28602800 0.06928319 \n", "Belo Horizonte2 0.19464782 0.25178191 0.06529713 \n", "Vitória2 0.21145848 0.27706401 0.06851849 \n", "Rio de Janeiro5 0.21767184 0.26717790 0.05209585 \n", "São Paulo4 0.15170250 0.19340637 0.06165555 \n", "Curitiba2 0.23207858 0.31102456 0.07416511 \n", "Florianópolis2 0.18424574 0.24968754 0.07694567 \n", "Porto Alegre2 0.19989965 0.28061813 0.08570683 \n", "Campo Grande2 0.19856658 0.25901934 0.06740551 \n", "Cuiabá2 0.09457907 0.13913590 0.09727016 \n", "Goiânia2 0.15699138 0.21557120 0.08022334 \n", "Brasília2 0.19472756 0.25915846 0.07242679 \n", "I001PSim 0.27772857 0.29218143 0.01293896 \n", "I001PSim1 0.41115798 0.43657347 0.01529650 \n", "I002PSim 0.25325236 0.26765108 0.01410323 \n", "I002PSim1 0.38041498 0.40629835 0.01678635 \n", "I003PSim 0.12280493 0.13174926 0.01792748 \n", "I003PSim1 0.19700024 0.21272238 0.01957825 " ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "matrizIndicadores" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "#### Exportando tabela de indicadores calculados - Módulo I 2019" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "diretorio_saida <- \"\"\n", "write.table(matrizIndicadores,file=paste0(diretorio_saida,\"Indicadores_2019I_R.csv\"),sep = \";\",dec = \",\",row.names = FALSE)" ] } ], "metadata": { "kernelspec": { "display_name": "R", "language": "R", "name": "ir" }, "language_info": { "codemirror_mode": "r", "file_extension": ".r", "mimetype": "text/x-r-source", "name": "R", "pygments_lexer": "r", "version": "3.6.3" } }, "nbformat": 4, "nbformat_minor": 4 }